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Abstract
In order to improve overall performance of a classification problem, a path of research

consists in using several classifiers and to fuse their outputs. To perform this fusion, some
approaches merge the outputs using a fusion rule. This requires that the outputs be made
comparable beforehand, which is usually done using a probabilistic calibration of each clas-
sifier. The fusion can also be performed by concatenating the classifier outputs into a vector,
and applying a joint probabilistic calibration to it. Recently, extensions of probabilistic cal-
ibrations of an individual classifier have been proposed using evidence theory, in order to
better represent the uncertainties inherent to the calibration process. In the first part of
this thesis, this latter idea is adapted to joint probabilistic calibration techniques, leading to
evidential versions. This approach is then compared to the aforementioned ones on classical
classification datasets. In the second part, the challenging problem of blurring faces on im-
ages, which SNCF needs to address, is tackled. A state-of-the-art method for this problem
is to use several face detectors, which return boxes with associated confidence scores, and
to combine their outputs using an association step and an evidential calibration. In this re-
port, it is shown that reasoning at the pixel level is more interesting than reasoning at the
box-level, and that among the fusion approaches discussed in the first part, the evidential
joint calibration yields the best results. Finally, the case of images coming from videos is
considered. To leverage the information contained in videos, a classical tracking algorithm is
added to the blurring system.
Keywords : Calibration, Face detection, Theory of belief functions, Classification, Informa-
tion fusion, Logistic regression.

Résumé
Afin d’améliorer les performances d’un problème de classification, une piste de recherche

consiste à utiliser plusieurs classifieurs et à fusionner leurs sorties. Pour ce faire, certaines
approches utilisent une règle de fusion. Cela nécessite que les sorties soient d’abord rendues
comparables, ce qui est généralement effectué en utilisant une calibration probabiliste de
chaque classifieur. La fusion peut également être réalisée en concaténant les sorties et en ap-
pliquant à ce vecteur une calibration probabiliste conjointe. Récemment, des extensions des
calibrations d’un classifieur individuel ont été proposées en utilisant la théorie de l’évidence,
afin de mieux représenter les incertitudes. Premièrement, cette idée est adaptée aux tech-
niques de calibrations probabilistes conjointes, conduisant à des versions évidentielles. Cette
approche est comparée à celles mentionnées ci-dessus sur des jeux de données de classifi-
cation classiques. Dans la seconde partie, le problème d’anonymisation de visages sur des
images, auquel SNCF doit répondre, est considéré. Une méthode consiste à utiliser plusieurs
détecteurs de visages, qui retournent des boites et des scores de confiance associés, et à com-
biner ces sorties avec une étape d’association et de calibration évidentielle. Il est montré que
le raisonnement au niveau pixel est plus intéressant que celui au niveau boite et que, parmi
les approches de fusion abordées dans la première partie, la calibration conjointe évidentielle
donne les meilleurs résultats. Enfin, le cas des images provenant de vidéos est considéré.
Pour tirer parti de l’information contenue dans les vidéos, un algorithme de suivi classique
est ajouté au système.
Mots-clés : Calibration, Détection de visages, Théorie des fonctions de croyance, Classifi-
cation, Fusion d’informations, Régression logistique.
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la recherche en général, a été contagieux et très motivant. Je les remercie tous les trois
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bons moments passés ensemble, à Paris ou ailleurs. Une pensée particulière à mes
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ma thèse mais aussi plus globalement dans mon parcours de vie.
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Introduction

Using multiple classifiers in order to solve a classification problem is a widely
studied subject in the supervised learning field, as it may be significantly more accurate
than using a single classifier. Ensemble methods regroup all the approaches that are
based on multiple classifiers [68, 107, 126]. Among them, the most common types
are the techniques of bagging [16], boosting [93, 45], and combination methods. In
bagging (bootstrap aggregation), multiple models are created using the same learning
algorithm but trained with different subsets of the original training dataset, randomly
created with bootstrap sampling method. Boosting refers to methods, which are able to
convert weak models, i.e., which have an error classification rate slightly below random
guess, to strong models. They iteratively build an ensemble by training each model
with the same dataset but where the weights of samples are adjusted according to the
error of the last iteration. The main idea is to force the models to focus on the difficult
samples. The third category concerns the methods that train different classifiers, called
base classifiers, and use their outputs as input to another classifier, called combiner
classifier. This category is the one that interested us the most as it enables for instance
to use for combination the outputs returned by already pre-trained base classifiers.

The approaches based on a fusion of multiple classifiers have many appli-
cations in classification, especially in the image processing field [17, 40, 87, 75, 114].
SNCF (Société Nationale des Chemins de Fer), the French railway company, needs to
address an issue of this kind due to legal reasons. Safety is one of the most important
challenges for SNCF. With such an infrastructure, there are multiple hazards for the
passengers and the agents. For instance, it may happen that the train starts while a
passenger is stuck between the train and the platform. Within this scope, a process
called EAS (Exploitation à Agent Seul) has been developed since the 1980’s in around
400 suburb stations, in Ile-de-France. The purpose of this system is to allow the train
driver to watch the railway platform in its entirety, so that the train can be started
without any problem. This system is composed of cameras positioned on the platforms,
and monitors. For the purpose of checking the proper positioning of cameras, a series
of videos is regularly recorded. However, according to the French legislation about
respect for private life, a video shall not be retained by the company if it contains
identifiable people on it. As it is too expensive to bring a train on purpose during off
hours, the videos are recorded during commercial hours, and thus, with public (users).

17
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SNCF would like to keep these videos for different purposes, such as for preventive
maintenance. Thus, the only viable solution is to make people faces unrecognizable on
those videos, i.e., blurring them, by using an automatic, or at least semi-automatic
system, as it is clearly too tedious to blur by hand the faces on each image of a video.
Yet, the conditions of the application are challenging, as they present several difficul-
ties such as bad image quality, indoor and outdoor situations, variation of lighting,
etc. Furthermore, faces are deformable objects, they can have many poses and sizes,
and occlusions may occur especially when the platform is crowded. Figure 1 shows two
examples of images extracted of some videos, and as it can be noticed the lighting and
the scene disposition are very different. These challenging conditions impact the effi-
ciency of a given face detector, which can be used to obtain face positions in a image;
given these positions, the blurring can be performed. Thus, using several classifiers
in order to obtain different information and combining these outputs seems to be an
interesting path of research to solve the face blurring issue.

Figure 1 – Examples of images extracted from two different videos.

This report is composed of two main parts. The first part concerns the com-
biner classifier, which fuses the outputs returned by several classifiers. To perform this
fusion, some approaches merge the outputs using a fusion rule. This requires that the
outputs be made comparable beforehand, which is usually done using a probabilis-
tic calibration of each classifier. The fusion can also be performed by concatenating
the classifier outputs into a vector, and applying a joint probabilistic calibration to
this vector. Recently, extensions of probabilistic calibration techniques of an individual
classifier have been proposed using evidence theory, in order to better represent the
uncertainties inherent to the calibration process. In this part of this thesis, this latter
idea is adapted to probabilistic joint calibration techniques, leading to evidential ver-
sions of joint calibration techniques. Chapter 1 exposes the main concepts of the belief
function theory and in particular its application to statistical inference and forecasting,
which is necessary to extend calibration techniques to the evidential framework. The
probabilistic version of the calibration techniques of a single classifier are exposed in
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Chapter 2, followed by their extension to the evidential framework. Then, the prob-
abilistic and evidential approaches of joint calibration of multiple classifiers that we
propose are described. Some performed experiments on classical datasets are exposed.

The second main part of this report deals with the problem of face blurring in
images, which SNCF needs to address due to legal reasons. A state-of-the-art method
for this problem is to use several face detectors, which return bounding boxes with
associated confidence scores, and to combine their outputs using an association step
and an evidential calibration of the detector scores. This classical approach is based
on the box-level. In this report, a reasoning at pixel-level, i.e., viewing this problem
as a binary classification of the pixels where each detector classifies each pixel as
belonging or not to a face, is proposed. Furthermore, the application of the joint
calibration is applied to this face blurring issue. Chapter 3 describes the classical box-
based approach as well as the pixel-based approach that we propose. A comparison
between these approaches is given, in terms of concepts and performances. Then, the
case of images extracted from videos is considered in Chapter 4, where a tracking
algorithm is integrated to the blurring system in order to leverage the information
contained in videos with respect to the face blurring problem. This report ends with
a general conclusion and some directions for future work.
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Chapter 1

Belief function theory
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1.1 Introduction

There are uncertainties in many systems and applications [2]. These uncer-
tainties may have different origins, for instance they may come from unreliable sources.
Based on the previous work of Dempster [23], Shafer established the basis of a the-
ory [97], called the Dempster-Shafer theory, which was further popularized and de-
veloped in particular by Smets [100]. This theory, also known as the belief function
theory or evidence theory, has proved to be an effective theoretical framework for rea-
soning with uncertain information. Indeed, this theory offers a convenient formalism
to represent, merge and propagate uncertainty. Starting from the 1990’s, it has been
applied in a growing number of applications and in many different fields, such as in

23
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data classification [86, 27], data clustering [31, 30], information fusion [10, 69, 114],
computer vision [41, 87], etc.

In this chapter, we first expose in Section 1.2 how to represent information
with belief functions. In Section 1.3, the most commonly used combination rule of this
framework is presented. The issue of decision-making using belief functions is described
in Section 1.4. Belief function theory can also be used for statistical inference and
prediction, as detailed in Section 1.5. This latter part is useful to extend probabilistic
calibrations to the evidential framework, as it will be seen in Chapter 2.

1.2 Information representation

This section exposes how to represent knowledge under the form of a belief
function, i.e., a function which allows one to take into account the imprecision and
uncertainty that might be contained in a piece of information.

1.2.1 Mass function

Let ω be a variable whose possible values belong to the finite set Ω =
{ω1, · · · , ωK}. In the belief function theory, uncertainty with respect to the actual
value ω0 taken by ω is represented using a Mass Function (MF) defined as a mapping
mΩ : 2Ω → [0, 1] verifying mΩ(∅) = 0 and∑

A⊆Ω
mΩ (A) = 1. (1.1)

The quantity mΩ(A) corresponds to the part of belief committed exactly to the hy-
pothesis ω0 ∈ A and nothing more specific.

Definition 1.2.1 Any subset A of Ω such that mΩ(A) > 0 is called a focal set of mΩ.

Definition 1.2.2 A mass function is said to be vacuous if Ω is the only focal set,
i.e., mΩ(Ω) = 1. As mΩ(Ω) represents the degree of ignorance, a vacuous mass func-
tion represents the case of total ignorance. We denote by mΩ the corresponding mass
function.

Definition 1.2.3 When the focal sets A1, . . . , AN , of a mass function mΩ are nested,
i.e., A1 ⊆ A2 ⊆ · · · ⊆ AN , the mass function mΩ is said to be consonant.
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Definition 1.2.4 A mass function is said to be Bayesian if its focal sets are singletons,
i.e., when any subset A of Ω such that mΩ(A) > 0 implies |A| = 1.

Example 1.2.1 A train driver saw in the distance a silhouette in the vicinity of rail-
ways. There are three possibilities: it is either a working SNCF employee (e), or a
senseless person who should not be there (p), or an animal (a). The set Ω = {e, p, a}
can be chosen as the frame of discernment. The train driver only saw the silhouette
briefly but he is convinced at 70% that he saw a human face. This information is not
fully certain as the driver did not see well, but if he is correct, we know that it was
either an employee or an unreasonable person. Otherwise, we know nothing, as it might
be a human or an animal. This piece of evidence can be represented by the following
mass function:

mΩ
1 ({e, p}) = 0.7, mΩ

1 (Ω) = 0.3. (1.2)

For instance, the quantity mΩ
1 ({e, p}) corresponds to the share of belief committed

exactly to the hypothesis ω0 ∈ {e, p}.

1.2.2 Belief and plausibility functions

The belief and the plausibility functions are equivalent representations of a
mass function. They are respectively defined by

BelΩ(A) =
∑
B⊆A

mΩ(B), ∀A ⊆ Ω, (1.3)

PlΩ(A) =
∑

B∩A 6=∅
mΩ(B), ∀A ⊆ Ω. (1.4)

The degree of belief BelΩ(A) measures the amount of evidence strictly in favour of
the hypothesis ω0 ∈ A, while the plausibility PlΩ(A) is the amount of evidence not
contradicting it.

Property 1.2.1 BelΩ(A) ≤ PlΩ(A), ∀A ⊆ Ω.

Property 1.2.2 These two quantities are linked by

PlΩ(A) = 1−BelΩ(A), ∀A ⊆ Ω, (1.5)

BelΩ(A) = 1− PlΩ(A), ∀A ⊆ Ω, (1.6)

where A is the complement of A.
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Property 1.2.3 A mass function mΩ can be retrieved from BelΩ or PlΩ using the
following equations:

mΩ(A) =
∑
B⊆A

(−1)|A|−|B|BelΩ(B), ∀A ⊆ Ω, (1.7)

mΩ(A) =
∑
B⊆A

(−1)|A|−|B|+1PlΩ(B), ∀A ⊆ Ω. (1.8)

Property 1.2.4 If the mass function mΩ is Bayesian, then BelΩ(A) =
PlΩ(A) ∀A ⊆ Ω, and BelΩ and PlΩ are a probability measure.

Property 1.2.5 The plausibility function restricted to singletons is called the contour
function, denoted plΩ and defined by

plΩ(ω) = PlΩ({ω}), ∀ω ∈ Ω. (1.9)

Property 1.2.6 When a mass function is consonant, the plausibility function can be
recovered from its contour function as follows:

PlΩ(A) = sup
ω∈A

plΩ(ω), ∀A ⊆ Ω. (1.10)

Example 1.2.2 Table 1.1 gives the mass function mΩ
1 of Example 1.2.1, as well as

the belief function BelΩ1 and plausibility function PlΩ1 associated to mΩ
1 .

A {e} {p} {e,p} {a} {e,a} {p,a} Ω
mΩ

1 (A) 0 0 0.7 0 0 0 0.3
BelΩ1 (A) 0 0 0.7 0 0 0 1
PlΩ1 (A) 1 1 1 0.3 1 1 1

Table 1.1 – Mass, belief and plausibility functions for Example 1.2.1.

If we take the hypothesis “it was an Animal”, we have no information that is
strictly in favour of this hypothesis, so BelΩ({a}) = 0. Furthermore, the evidence that
does not contradict this hypothesis has a confidence of 0.3, so PlΩ({a}) = 0.3.

1.3 Combination of evidence

An important aspect of belief function theory concerns the combination of
some pieces of evidence provided by different sources. Several combination rules exist
to merge two given mass functions, such as the disjunctive rule [99] or the cautious
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rule [28]. In this section, we will only introduce the most commonly used one, which
is Dempster’s rule of combination [23, 97], also known as orthogonal sum.

Given two mass functions mΩ
1 and mΩ

2 obtained from two distinct and reliable
sources, the fusion of these two pieces of evidence with Dempster’s rule of combination,
denoted ⊕, results in a mass function mΩ

1⊕2 defined by

mΩ
1⊕2(A) = (mΩ

1 ⊕mΩ
2 )(A) = 1

1− κ
∑

B∩C=A
mΩ

1 (B)mΩ
2 (C), ∀A 6= ∅, (1.11)

where
κ =

∑
B∩C=∅

mΩ
1 (B)mΩ

2 (C), (1.12)

represents the degree of conflict between mΩ
1 and mΩ

2 , and mΩ
1⊕2(∅) = 0. If κ = 1, there

is a total conflict between the two pieces of evidence and they cannot be combined.

Property 1.3.1 Dempster’s rule of combination is commutative, i.e., mΩ
1⊕2 = mΩ

2⊕1.

Property 1.3.2 Dempster’s rule of combination is associative, i.e., mΩ
1⊕2 ⊕ mΩ

3 =
mΩ

1 ⊕mΩ
2⊕3.

Property 1.3.3 The vacuous mass function mΩ is the unique neutral element, i.e.,
mΩ ⊕mΩ = mΩ.

Example 1.3.1 A new piece of evidence is added to Example 1.2.1: the ticket inspector
affirms that if they are in a protected natural area, it was necessarily an animal. As
they were not in a wooded environment, we judge that there is only 30% of chance that
it was a protected natural area. This information can be represented by the following
mass function:

mΩ
2 ({a}) = 0.3, mΩ

2 (Ω) = 0.7. (1.13)

The two masses mΩ
1 and mΩ

2 are obtained from two different sources that we assume
to be reliable. Thus, they can be combined following Eq. (1.11) and this fusion results
in the mass function mΩ

1⊕2, presented in Table 1.2.

A {e} {p} {e,p} {a} {e,a} {p,a} Ω
mΩ

1⊕2(A) 0 0 0.62 0.11 0 0 0.27

Table 1.2 – Mass function mΩ
1⊕2 resulting from the combination of mΩ

1 and mΩ
2 .
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1.4 Decision-making

After representing and merging imperfect information about a given problem,
one may need to make a decision about the considered problem. Different strategies
exist in the evidential formalism to make a decision about the actual value ω0 of ω
given knowledge about ω0 represented by a mass function mΩ [26]. This section exposes
some of them, in particular the decision strategies based on maximum of belief (or
plausibility), based on costs and finally, using a reject option.

A first simple strategy consists in choosing the value ω ∈ Ω corresponding
to the singleton with the highest belief. The same strategy can be used choosing the
singleton with maximum plausibility. In a binary situation, i.e., when |Ω| = 2, using
the maximum of mass, belief or plausibility leads to the same decision.

Yet, making a wrong decision about a class can have more or less important
consequence depending on the considered class, and this can be taken into account
using decision costs. The value ω ∈ Ω having the smallest so-called upper or lower
expected costs may be selected. The upper and lower expected costs of some value
ω ∈ Ω, respectively denoted by R∗(ω) and R∗(ω), are defined as

R∗(ω) =
∑
A⊆Ω

mΩ(A) max
ω′∈A

c(ω, ω′), (1.14)

R∗(ω) =
∑
A⊆Ω

mΩ(A) min
ω′∈A

c(ω, ω′), (1.15)

where c(ω, ω′) is the cost of deciding ω when the true answer is ω′. Choosing the value
ω minimizing the lower (resp. upper) expected costs is called the optimistic (resp.
pessimistic) strategy.

Let us consider a particular situation when the set of focal elements is reduced
to singletons and Ω, and with

c(ω, ω′) =
{

0, if ω = ω′,
1, otherwise. (1.16)

In that case, the upper and lower expected costs are respectively and simply defined
as

R∗(ω) = 1−mΩ({ω}) = 1−BelΩ({w}), (1.17)
R∗(ω) = 1−mΩ({ω})−mΩ(Ω) = 1− PlΩ({w}). (1.18)

This amounts to choosing the singleton with the highest belief or, equivalently, plau-
sibility.

Example 1.4.1 Let us consider again our example, but simplified. The question is now
only to determine if it was a human (h) or an animal (a); the frame of discernment
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becomes thus in that case Ω = {h, a}. We consider that the final obtained mass function
mΩ is the following:

mΩ({h}) = 0.35, mΩ({a}) = 0.55, mΩ(Ω) = 0.1. (1.19)

Using the maximum of belief or plausibility rules leads to the decision {Animal}. The
belief and plausibility functions are given in Table 1.3.

We now consider that it is twice more serious to decide {Animal} when the
true answer is {Human} than the opposite, i.e., c(a, h) = 2 and c(h, a) = 1. Plus,
we have c(a, a) = c(h, h) = 0. The corresponding risks are given in Table 1.3. In that
case, the smallest upper expected cost R∗ corresponds to the decision {Human}. The
same conclusion can be made using the smallest lower expected costs. It illustrates the
fact that using the decision costs can change a final decision.

Decisions BelΩ PlΩ R∗ R∗
{Human} 0.35 0.45 0.65 0.55
{Animal} 0.55 0.65 0.9 0.7

Table 1.3 – Belief and plausibility functions, risks.

To avoid making wrong decisions in the risky cases, i.e., when the expected
costs are high, a decision of rejection may be introduced. Formally, a reject cost Rrej ≥
0 is introduced and is compared to the chosen expected costs, for instance the upper
expected costs. In that case, the decision to reject is made when Rrej is lower than the
upper expected costs.

Example 1.4.2 For instance, if we fix Rrej = 0.5 and we use the upper expected
costs in Table 1.3, then using the preceding Example 1.4.1 the decision is now neither
{Animal} nor {Human} but to reject.

1.5 Statistical inference and forecasting

Belief function theory can also be used for estimation and forecasting. Es-
timation consists in representing the knowledge about an unknown parameter after
observing some data while forecasting (also known as prediction) consists in making
statements about a not yet observed data based on available data [97, 29, 25, 63, 62].

1.5.1 Estimation

Consider θ ∈ Θ an unknown parameter, x ∈ X some observed data and fθ(x)
the density function generating the data. Statistical inference consists in making state-
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ments about θ after observing the data x. Shafer [97] proposed to represent knowledge
about θ given x by a consonant belief function BelΘx based on the likelihood function
Lx : θ → fθ(x) (see also justifications by Denoeux in [29]), whose contour function is
the normalized likelihood function:

plΘx (θ) = Lx(θ)
sup
θ′∈Θ

Lx(θ′)
, ∀θ ∈ Θ. (1.20)

Example 1.5.1 Let us consider an important particular case. Assume that each train
leaving Gare du Nord is either on time or not. We denote by θ the probability that
a train is on time. Furthermore, we assume that a delayed train does not impact the
departure of the other trains. Assume further that n trains have been observed and that
x ≤ n of these trains were on time.

Let X denote the number of trains that are on time out of n trains. X has
thus a binomial distribution with parameters n ∈ N and θ ∈ [0, 1], i.e., X ∼ B(n, θ). If
x ≤ n trains have been observed to be on time, the likelihood of value θ ∈ [0, 1] is

Lx(θ) =
(
n

x

)
θx(1− θ)n−x. (1.21)

Thus, the likelihood-based belief function has the following contour function:

plΘx (θ) = θx(1− θ)n−x

θ̂x(1− θ̂)n−x
, (1.22)

for all θ ∈ Θ = [0, 1], where θ̂ = x
n

is the Maximum Likelihood Estimate (MLE) of
θ. Figure 1.1 shows the contour function of the binomial distribution, for n = 30 and
x = 10, i.e., we have observed 30 trains during the day and 10 of them were on time.

1.5.2 Prediction

Let us now suppose that we have some knowledge about θ ∈ Θ after observing
some data x, given under a form of a consonant belief function BelΘx . The aim of fore-
casting is to make statements about a not yet observed data Y ∈ Y, whose conditional
distribution gx,θ(y) given X = x depends on θ. A solution to this problem, proposed
by Kanjanatarakul et al. [63, 62], consists in using the fact that BelΘx is equivalent to
a random set, and in using the sampling model of Dempster [25] to deduce a belief
function on Y. We detail these two points below.

Let us recall that the focal sets of BelΘx are the level sets of plΘx [79], defined
by

Γx(γ) = {θ ∈ Θ|plΘx (θ) ≥ γ}, ∀γ ∈ [0, 1]. (1.23)
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Example 1.5.2 For instance in Figure 1.1, for γ = γ0 = 0.4, the set Γx(γ0) is de-
fined as the set of all values of θ ∈ Θ such that plΘx (θ) ≥ 0.4, i.e.,Γx(γ0) = [a, b] ≈
[0.225, 0.454].

Figure 1.1 – Contour function of a binomial distribution, with n = 30 and x = 10.

Moreover, the belief function BelΘx is equivalent to the random set induced
by the Lebesgue measure λ on [0, 1] and the multi-valued mapping Γx : [0, 1]→ Θ [79].
Thus, we have

BelΘx (A) = λ({γ ∈ [0, 1]|Γx(γ) ⊆ A}), (1.24)
PlΘx (A) = λ({γ ∈ [0, 1]|Γx(γ) ∩ A 6= ∅}), (1.25)

for all A ⊆ Θ.

The sampling model of Dempster proposes to express Y using a function ϕ
depending on the parameter θ and some unobserved variable Z ∈ Z, whose probability
distribution µ is known and independent of θ:

Y = ϕ(θ, Z). (1.26)

From Eqs. (1.23) and (1.26), for a given (γ, z) ∈ [0, 1]×Z, we can assert that
Y ∈ ϕ(Γx(γ), z). This can be represented by a multi-valued mapping Γ′x : [0, 1]×Z→ Y
defined by composing Γx with ϕ, i.e., Γ′x(γ, z) = ϕ(Γx(γ), z),∀(γ, z) ∈ [0, 1]× Z. The
product measure λ⊗µ on [0, 1]×Z and the multi-valued mapping Γ′x induce the belief
and plausibility functions on Y, which are defined by

BelYx (A) = (λ⊗ µ)({(γ, z)|ϕ(Γx(γ), z) ⊆ A}), (1.27)

PlYx (A) = (λ⊗ µ)({(γ, z)|ϕ(Γx(γ), z) ∩ A 6= ∅}), (1.28)
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for all A ⊆ Y.

Let us consider a binary case, which will be useful hereafter. Let Y ∈ Y =
{0, 1} be a random variable with a Bernoulli distribution, i.e., Y ∼ B(θ). In that case,
the function ϕ can be defined as follows:

Y = ϕ(θ, Z) =
{

1, if Z ≤ θ,
0, otherwise, (1.29)

with Z having a uniform distribution on [0, 1]. Assume that the consonant belief func-
tion BelΘx has a unimodal and continuous contour function plΘx . In that case, each level
set of BelΘx is a closed interval, i.e., Γx(γ) = [U(γ), V (γ)] [24], and the multi-valued
mapping Γ′x defined by composing Γx with ϕ, is given by

Γ′x(γ, z) = ϕ([U(γ), V (γ)], z) =


{1}, if z ≤ U(γ),
{0}, if z > V (γ),
{0, 1}, otherwise.

(1.30)

By applying Eq. (1.27), we get

BelYx ({1}) = (λ⊗ µ)({(γ, z)|z ≤ U(γ)}), (1.31)

BelYx ({0}) = (λ⊗ µ)({(γ, z)|z > V (γ)}). (1.32)

Kanjanatarakul et al. [63] showed that in this situation, Eq. (1.31) is equivalent to

BelYx ({1}) =
∫ +∞

0
(1− FU(u))du, (1.33)

where FU(u) is the cumulative distribution function of U . By definition, we have

FU(u) = P (U ≤ u), (1.34)
= P ([U, V ]∩]−∞, u] 6= ∅), (1.35)
= PlΘx (]−∞, u]), (1.36)

=
{
plΘx (u) if u ≤ θ̂,

1 otherwise. (1.37)

Finally, using Eqs. (1.33) and (1.37), we thus obtain the following belief function:

BelYx ({1}) = θ̂ −
∫ θ̂

0
plΘx (u)du, (1.38)

where θ̂ maximizes plΘx . The same reasoning can be applied for the plausibility function
and we obtain

PlYx ({1}) = θ̂ +
∫ 1

θ̂
plΘx (u)du. (1.39)
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These functions are equivalent to the mass function illustrated in Figure 1.2
and which is defined by

mY
x ({0}) = 1− θ̂ −

∫ 1

θ̂
plΘx (u)du, (1.40)

mY
x ({1}) = θ̂ −

∫ θ̂

0
plΘx (u)du, (1.41)

mY
x ({0, 1}) =

∫ 1

0
plΘx (u)du, (1.42)

Figure 1.2 – Illustration of the mass function mY
x , which depends on the contour

function plΘx .

The part of ignorance in mY
x depends on the area under the contour function

curve. Figure 1.3 shows the different obtained contour functions of the binomial dis-
tribution, for n ∈ {3, 30, 300} and a fixed θ̂ = 0.33. As it can be seen, the bigger n,
i.e., the bigger the number of trials, the smaller the uncertainty, as the area under the
curve is lower.

Example 1.5.3 Let us consider again the particular case of Section 1.5.1, where X ∼
B(n, θ). After observing some trains, we now have some knowledge about the probability
θ that a train departure is on time. In that case, the contour function on Θ defined in
Eq. (1.22) is unimodal and continuous, as illustrated in Figure 1.1. Thus, to represent
knowledge about the on-time departure of an unobserved train, i.e., the data Y ∈ Y,
with Y ∼ B(θ), we can apply Eqs. (1.38) and (1.39). Xu et al. showed that the obtained
belief and plausibility functions boil down in that case to [116]:

BelYx ({1}) =


0, if θ̂ = 0,
θ̂ − B(θ̂;x+1,n−x+1)

θ̂x(1−θ̂)n−x , if 0 < θ̂ < 1,
n
n+1 , if θ̂ = 1,

(1.43)
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Figure 1.3 – Contour function of a binomial distribution, with n ∈ {3, 30, 300} and
θ̂ = 0.33.

PlYx ({1}) =


1

n+1 , if θ̂ = 0,
θ̂ + B(θ̂;x+1,n−x+1)

θ̂x(1−θ̂)n−x , if 0 < θ̂ < 1,
1, if θ̂ = 1,

(1.44)

where B and B are respectively the lower and upper incomplete beta functions, defined
when a and b are integers and 0 < z < 1 by

B(z; a, b) =
a+b−1∑
j=a

(a− 1)!(b− 1)!
j!(a+ b− 1− j)!z

j(1− z)a+b−1−j, (1.45)

and
B(z; a, b) = B(1− z; b, a). (1.46)

To continue the example where we observed 30 trains where 10 were on time,
and thus θ̂ ≈ 0.33, the obtained values of the belief and plausibility functions using
Eqs. (1.43) and (1.44) are BelYx ({On time}) = 0.23 and PlYx ({On time}) = 0.44. Let
us note that the chosen data are not the real ones and that it does not reflect the reality
of on-time trains.

1.6 Conclusion

In this chapter, we have introduced the fundamental concepts of the theory
of belief functions, including the representation of evidence, the combination of pieces
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of evidence, the decision-making process, and the application of belief functions to in-
ference and forecasting. We gave some simple examples to illustrate all these concepts.

Belief function theory is a powerful tool to handle uncertainties. For instance,
in the following chapter, it is used to improve some probabilistic calibration techniques
and specifically to better represent the uncertainties inherent to the calibration process.
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2.1 Introduction

As recalled in Introduction, the combination methods regroup the approaches
using the outputs of several base classifiers as input to another classifier. Since the
base classifiers do not necessarily give the same output after observing a given object,
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a central issue in this approach consists in figuring out how to exploit these outputs
to classify this object. These various combination methods are usually separated into
two categories: the non-trainable and trainable combiners.

In the first category, the outputs returned by the classifiers after observing a
given object are combined using a predetermined rule of combination. As the used clas-
sifiers are different, i.e., they may be trained with different data or based on different
training models, their outputs are not scaled with respect to each other and thus have
to be made comparable before being combined. A step called calibration [85] is thus
usually performed to transform each output into a probability. In particular, the three
calibration techniques the most commonly used are based on binning [120], isotonic
regression [121] and logistic regression [85]. These calibration techniques suffer from
an over-fitting problem, especially when only few training data are available. Within
this scope, Xu et al. [116] recently proposed a refinement of the main calibration pro-
cedures using evidence theory [97, 100]. This theory allows Xu et al. to model more
precisely the uncertainties inherent to such calibration process and thus to prevent the
over-fitting issue. Xu et al. used this refinement to propose in [116] an approach of
the non-trainable kind for binary classification problems. This latter approach consists
in: using several SVM classifiers returning confidence scores, calibrating each of the
returned scores using an evidential calibration technique, hence transforming each of
the score into a belief function, and finally merging them using Dempster’s rule of
combination [97].

The second category regroups the approaches using the concatenation of the
outputs of the classifiers as an input vector for another classifier. In particular, the
approach defined in [125] is a member of that category as a vector of scores obtained
from an ensemble of classifiers is provided as an input vector to a probabilistic classifier
based on multiple isotonic regression. Note that such kind of approach may be regarded
as a probabilistic joint calibration as it learns how to convert a vector of scores into a
probability, that is it calibrates jointly the classifiers. In addition, as logistic regression
can also be defined with multiple inputs [52], one may envisage to extend this kind of
approach to the logistic model.

Both categories present some disadvantages. As already mentioned, the cali-
bration techniques used in the non-trainable combiners are prone to uncertainties. In
addition, non-trainable combiners rely on a fixed rule of combination; as explained in
particular by Duin [36], an improved result may be obtained using an approach of the
trainable combiner category. For the trainable combiners, a training set common to all
classifiers is required, and the combiner must be re-learned each time a new classifier is
added to the system. Furthermore, trainable combiner approaches corresponding to a
probabilistic joint calibration may also be prone to the uncertainties problem inherent
to probabilistic calibration.

Within this scope, we propose in this chapter to study the application of the
appealing element of Xu et al.’s approach [116], i.e., the evidential extension of cali-
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bration, to joint calibration techniques. As a result, we obtain methods that transform
the vector of scores returned by the classifiers for a given object into a belief function.
Let us note that we only consider binary classification problems.

This chapter is organized as follows. In Section 2.2, probabilistic calibra-
tion methods of a single classifier are presented, followed by their extension using the
evidence theory. Then, probabilistic joint calibrations and their extension to the ev-
idential framework that we propose, are exposed in Section 2.3. In Section 2.4, the
proposed approach is compared experimentally to other approaches, and in particular
to Xu et al. non-trainable combiner approach relying on evidential calibration of in-
dividual classifiers and to probabilistic joint calibration. Finally, conclusions are given
in Section 2.5.

2.2 Calibration of a single classifier

Let us consider an object, whose true label y is such that y ∈ Y = {0, 1}, and a
confidence score s ∈ R returned by a classifier after observing this object. To learn how
to interpret what this score represents with respect to y, a step called calibration may
be used. This step relies on a training set X , which contains n other objects for which
the label is known, and for which we observed the score that the classifier returned,
i.e., X = {(s1, y1), ..., (sn, yn)} where si represents the score given by the classifier for
the ith object whose true label is yi. The calibration procedures commonly used are the
binning [120], isotonic regression [121] and logistic regression [85]. The probabilistic
version of these calibrations is described in Section 2.2.1, followed by their extension
to the evidential framework in Section 2.2.2.

2.2.1 Probabilistic calibration of a single classifier

Given a score s ∈ R returned by a classifier after observing a given object,
the aim of the calibration in the probabilistic framework consists in estimating the
probability distribution pY(·|s).

Binning The binning approach consists in dividing the score spaces into BU different
bins, for example ] − 3;−2], ] − 2;−1], etc. For each bin j, the number kj of couples
(si, yi) ∈ X such that yi = 1 and si is in bin j, and the number nj of couples (si, yi) ∈ X
such that si is in bin j can be obtained. Then, for a score s such that s belongs to bin
j, we have

PY(y = 1|s) = kj
nj
. (2.1)
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There are different ways of building the bins, i.e., choosing the size and the
boundaries position of each bin. For instance, one may find the lowest and highest
scores in the training set and divide the interval by the desired total number of bins.

Isotonic regression The second main calibration is the method based on the isotonic
regression. It was proposed in [121] and consists in fitting a non-decreasing stepwise-
constant function g, i.e., an isotonic function, according to the mean-squared error
criterion:

ĝ = arg min
g

1
n

n∑
i=1

[g(si)− yi]2, (2.2)

such that g(s1) < · · · < g(sn) and where ĝ is the vector of calibrated probability
estimates. An iterative algorithm called the pair-adjacent violators (PAV) algorithm
[4] can be used in order to find the optimal function ĝ that best fits the data: first,
the couples (si, yi) ∈ X are ranked with respect to si in increasing order. Then, the
algorithm analyzes all the data looking for violations of the monotonicity constraint,
i.e., a situation where g(si−1) > g(si). The examples si−1 and si are thus called pair-
adjacent violators, and the values of g(si−1) and g(si) are replaced. This PAV algorithm
is presented in Algorithm 1 (taken from [116]).

Algorithm 1 PAV algorithm for isotonic calibration
Input: training set X = {(s1, y1), ..., (sn, yn)} sorted according to si
ĝi,i ← 0, wi ← 0
ĝ1 ← 1, w1 ← 1
i← 1
for j=2:n do
i← i+ 1
ĝ(si)← yj
wi ← wj
while i > 2 and ĝ(si−1) > ĝ(si) do
ĝ(si−1)← wi−1ĝ(si−1)+wiĝ(si)

wi−1+wi

wi−1 ← wi−1 + wi
i← i− 1

end while
end for
Output: ĝ(s) = ĝi,j for si < s < sj

The output is thus a set of intervals and a probability estimate associated to
each interval. For a given score s to be calibrated, the interval k such that s is between
the lowest and highest scores in this interval is found, and the probability estimate
PY(y = 1|s) is thus ĝ(k). Let us note that this calibration can be seen as a form of
binning, where the position of the boundaries and the size of the bins are dynamically
calculated instead of being fixed, and which entirely depends on the training set X .
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Logistic regression The third calibration is similar to the isotonic regression-based
calibration, but the difference is the function being fit. It is similar in the sense that
both have a non-decreasing constraint, i.e., the higher the score the higher the prob-
ability of having the positive class, that binning does not have. Thus, the calibration
based on isotonic regression can be seen as an intermediary approach between binning
and logistic regression [121].

The calibration based on logistic regression proposed by Platt [85] is based
on fitting a sigmoid function h defined by

PY(y = 1|s) ≈ hs(σ) = 1
1 + e−(σ0+σ1s)

, (2.3)

where the parameter σ = (σ0, σ1) ∈ R2 is chosen as the one maximizing the following
likelihood function:

LX (σ) =
n∏
i=1

pyi
i (1− pi)1−yi , (2.4)

with
pi = 1

1 + e−(σ0+σ1si)
. (2.5)

To find the optimal parameters σ̂ = (σ̂0, σ̂1), usually a maximisation algorithm such as
gradient ascent is used. Since the logarithm function is a strictly increasing function,
maximizing the logarithm of the likelihood is the same as maximizing the likelihood,
except that it is usually easier to do it. The log-likelihood is defined by

`(σ) = logLX (σ) (2.6)

=
n∑
i=1

(
yilog(pi) + (1− yi)log(1− pi)

)
. (2.7)

The computation of the gradient of the log-likelihood at iteration k is denoted by
∇`(σ) = [∂`(σ)

∂σ0
, ∂`(σ)
∂σ1

] and gives:

∂`(σ)
∂σ0

=
n∑
i

(yi − pi),
∂`(σ)
∂σ1

=
n∑
i

(yi − pi)si. (2.8)

The gradient ascent is an iterative method and so the parameters are updated at each
iteration k, until convergence, with:

σ
(k+1)
j ← σ

(k)
j + η

∂`(σ(k))
∂σj

, (2.9)

where η is called the learning rate. The whole gradient ascent algorithm is presented
in Algorithm 2.

It may happen that the training data are perfectly (linearly) separable, i.e.,
all data of the first class are in one half-space and those of the second class are in the
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Algorithm 2 Batch gradient ascent to find the optimal parameters
Input: training set X = {(s1, y1), ..., (sn, yn)}, error criterion ε.
Initialization: σ(0) = (0, 0).
while

∥∥∥∇`(σ(k))
∥∥∥ ≥ ε do

Compute the gradient: ∇`(σ(k)) = [∂`(σ
(k))

∂σ0
, ∂`(σ

(k))
∂σ1

]
Update the parameters : σ(k+1)

j ← σ
(k)
j + η ∂`(σ

(k))
∂σj

, j = 0, 1
end while
Output: σ̂ = (σ̂0, σ̂1)

other half-space. It especially happens when only few data are available. In that case,
the gradient ascent does not converge and the parameter σ tends to infinity. To solve
this issue, Platt [85] proposed to change the labels yi by

ti =
{ N++1

N++2 if yi = 1,
1

N−+2 if yi = 0, (2.10)

where N+ and N− are respectively the number of positive and negative samples in the
training set X . In order to illustrate this point, we trained a logistic-based calibration
with, then without, this change of labels. It was trained with 10 examples of the
Australian dataset1 that we selected so that they had the particularity to be linearly
separable. Then, the probability was computed, in both cases, for score range between
-3 and 3. Figure 2.1 illustrates the impact of this change of label, that enables to
smooth the function.

Figure 2.1 – Illustration of the impact of the label change. Calibration trained with 10
linearly separable examples of Australian dataset.

1UCI dataset available at http://archive.ics.uci.edu/ml.



CHAPTER 2. EVIDENTIAL CALIBRATION OF SCORES 43

We may remark that the less training samples are available, the more the
estimated probabilities are uncertain. For instance, if a bin contains only few examples,
the uncertainty is higher than a bin containing more data. Within this scope, the above
calibrations have recently been refined using the theory of evidence, in order to better
handle the uncertainties [116]. The following section recalls the evidential versions of
these calibration procedures.

2.2.2 Evidential calibration of a single classifier

The calibration of a given score s can be seen as a prediction problem of a
Bernoulli variable Y ∈ Y = {0, 1} with parameter θ, where uncertainty on θ depends
on s. Different models to estimate the uncertainty on θ have been studied in [116],
and the authors highlighted in particular the benefits of the so-called likelihood-based
model. Thus, this chapter focuses on the evidential extension of the calibrations based
on this likelihood model. These evidential calibration procedures yields a MF mY(·|s)
(rather than a probability distribution), equivalently represented by the belief and
plausibility functions BelY(·|s) and PlY(·|s).

Binning For a given bin j, binning can be seen as a binomial experiment, where the
number of examples nj corresponds to the number of trials and the number of positive
examples kj represents the number of successes. Thus, it corresponds to the particular
case of estimation considered in Section 1.5.1, and used for forecasting in Section 1.5.2.
Considering that the given score s is in bin j, the likelihood-based contour function
defined in Eq. (1.22) becomes

plΘX (θ|s) = θkj (1− θ)nj−kj

θ̂kj (1− θ̂)nj−kj
, (2.11)

where θ̂ = kj

nj
is the Maximum Likelihood Estimate (MLE) of θ. The belief and plausi-

bility functions BelY(·|s) and PlY(·|s) are then simply obtained using Eq. (1.43) and
(1.44) with x = kj and n = nj.

Example 2.2.1 Figure 2.2 illustrates the probability, belief and plausibility of having
a positive example given a confidence score returned by a SVM classifier trained with a
UCI dataset [5] called Australian. In Figure 2.2a (resp. Figure 2.2b), the training set
of calibration is composed of 200 (resp. 50) examples. As it can be noticed, the interval
between BelY(·|s) and PlY(·|s) is higher when there are less examples in the training
set, i.e., there is more ignorance, as should be. Thus, if a bin contains many training
examples, the ignorance is low, and vice versa. This information cannot be obtained
with the probabilistic calibration, as it is represented by only one value. Thus, the
calibration based on evidence theory better reflects the uncertainties. It can be noticed
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in Figure 2.2a that the calibration based on binning is not a strictly increasing function,
unlike the other two calibrations.

(a) Calibration trained with 200 examples. (b) Calibration trained with 50 examples.

Figure 2.2 – Illustration of calibration based on evidential binning and trained with
200 (left) and 50 (right) examples with the Australian dataset.

Isotonic regression As noticed in Section 2.2.1, the calibration based on isotonic
regression can be seen as a form of binning. Thus, the extension to the evidential
framework used for binning can be straightforwardly applied to this calibration [116].

Logistic regression Logistic-based calibration can also be extended in the evidential
framework. Specifically, Xu et al. [116] express uncertainty on the parameter σ =
(σ0, σ1) of the sigmoid function, by a consonant belief function BelΣ, whose contour
function is defined by

plΣX (σ) = LX (σ)
LX (σ̂) , ∀σ ∈ Σ, (2.12)

where σ̂ = (σ̂0, σ̂1) is the MLE of σ and LX is the likelihood function defined in Eq.
(2.4). The corresponding plausibility function is defined as

PlΣX (A) = sup
σ∈A

plΣX (σ), ∀A ⊆ Σ. (2.13)

As seen in Section 1.5.2, the belief and plausibility functions on Y can be deduced from
the contour function plΘX defined on Θ. Xu et al. showed in [116] that this function plΘX
can be computed from PlΣX . Indeed, as θ is defined by θ = hs(σ), we get

plΘX (θ|s) =
{

0 if θ ∈ {0, 1},
P lΣX (h−1

s (θ)) otherwise, (2.14)
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with

h−1
s (θ) = {(σ0, σ1) ∈ Σ|hs(σ) = θ} , (2.15)

=
{

(σ0, σ1) ∈ Σ| 1
1 + exp(−(σ0 + σ1s))

= θ

}
, (2.16)

=
{

(σ0, σ1) ∈ Σ|σ0 = −ln(θ−1 − 1)− σ1s
}
. (2.17)

Finally, Eqs. (2.14) and (2.17) yield the following function

plΘX (θ|s) = sup
σ1∈R

plΣX (−ln(θ−1 − 1)− σ1s, σ1), ∀θ ∈ [0, 1]. (2.18)

The value σ1 maximizing plΘX (θ|s) can be obtained using a gradient ascent as in the
probabilistic version. In that case, the value of the partial derivative is obtained by

∂`(σ(k))
∂σ1

=
∑
i

(yi − p′i)(si − s), (2.19)

where
p′i = 1

1 + exp(−(−ln(θ−1 − 1)− σ(k)
1 s+ σ

(k)
1 si))

. (2.20)

After that plΘX (θ|s) is computed, the belief and plausibility functions BelY(·|s) and
PlY(·|s) can then be calculated using Eqs. (1.38) and (1.39).

Example 2.2.2 Figure 2.3 illustrates the probability, belief and plausibility obtained
with a calibration using logistic regression and the Australian dataset. In Figure 2.3a,
the training set of calibration is composed of 200 examples and we can notice that
the ignorance is lower than in Figure 2.3b, where the calibration is trained with 50
examples. This difference of level of ignorance cannot be obtained with the probabilistic
calibration.

Let us consider again the particular situation where the data are linearly
separable. Figure 2.4 shows the probability, belief and plausibility functions obtained
in that case, without (Figure 2.4a) and with (Figure 2.4b) the change of labels. We
may notice that without the change, we obtained either a total ignorance or a null
ignorance, depending on the value of the score. This model reflects well the reality, as
in the used training data there were no score between −1 and 0.5 and in that case
for a given new score, the obtained belief function corresponds to total ignorance; we
had no information, so we have no knowledge. Yet, it is reasonable to think that for a
score close to one of the class, for instance s = −0.99, it is more likely that the sample
belongs to the negative class. In that sense, and after performing some tests, we may
estimate that the modelling is better with the change of labels for evidential logistic
regression, as it is smoother.
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(a) Calibration trained with 200 examples. (b) Calibration trained with 50 examples.

Figure 2.3 – Illustration of calibration based on logistic regression and trained with
200 and 50 examples, with the Australian dataset.

(a) Without change. (b) With change.

Figure 2.4 – Logistic-based calibration trained with 10 examples of Australian that are
perfectly separable.

2.3 Evidential joint calibration of multiple classi-
fiers

In a context of multiple classifiers, one may independently calibrate the scores
given by each classifier after observing an object, using the techniques described in the
previous section, and then merge them using a predetermined rule of combination. Yet,
using a fixed rule may be the best combination only under very strict conditions, and an
improved result may be obtained using an approach of the trainable combiner category
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[36]. We propose in this section to use the multivariable versions of the techniques
underlying the calibrations, and to apply it to the outputs of multiple classifiers, i.e., to
perform a joint calibration of the scores provided by binary classifiers. More specifically,
in order to better handle the uncertainties of the calibration process, we propose to
perform the joint calibration in the evidential framework. As the isotonic regression
can be seen as an intermediary approach between binning and logistic regression [121],
only this latter two are considered in this report.

For a given object, we take as input the score vector s = (s1, s2, ..., sJ), with sj
the score returned by the jth classifier after observing the object. The required training
set is now defined by X ′ = {(s11, s21, ..., sJ1, y1), ..., (s1n, s2n, ..., sJn, yn)}, where sji
corresponds to the score given by the jth classifier for the ith test sample, and yi the
true label of this sample.

We first expose in Section 2.3.1 the joint version of binning calibration, fol-
lowed by the joint version of the calibration based on logistic regression in Section
2.3.2.

2.3.1 Joint binning

The idea consists in dividing the score space into multi-dimensional bins
(cells), or more precisely into J-dimensional bins with J the number of classifiers. Let
us illustrate the building of these cells with a 2D scenario, i.e., when only two classifiers
are considered. If the first classifier has score values between -3 and 3 and the second
classifier has score values between -2 and 1, the score space is [−3, 3]×[−2, 1]. This score
space can be divided in different ways. In particular, a number of bins per classifier
can be chosen and the score space can be divided uniformly based on this number. An
illustration of this naive scheme is given in Figure 2.5, where the number of bins by
classifier, denoted BM , is chosen equal to 5.

Figure 2.5 – Example of score space for joint binning, with J = 2 and BM = 5.

Given a cell c, the number kc of tuples (s1i, s2i, ..., sJi, yi) ∈ X ′ such that
yi = 1 and (s1i, s2i, ..., sJi) belongs to cell c, and the number nc of tuples such



48 2.3. EVIDENTIAL JOINT CALIBRATION OF MULTIPLE CLASSIFIERS

that (s1i, s2i, ..., sJi) belongs to cell c, can be obtained. For a given input vector
s = (s1, s2, ..., sJ) such that s belongs to the cell c, we have

PY(y = 1|s) = kc
nc
. (2.21)

For instance, let us consider that we have s = (0.5,−1), i.e., after observing a given
example the first classifier returns the score 0.5 and the second −1. The probability
associated to this object can thus be found by looking into the corresponding cell c,
which is the one marked by a cross in Figure 2.5.

This probabilistic joint approach of binning can be extended to the evidential
framework. Similarly to the single classifier case, the label y of a given score vector s
can be seen as a realization of a random variable with a Bernoulli distribution, and
binning can be seen as a binomial experiment for each cell. If the score vector s is
in cell c, the belief and plausibility functions associated to this score vector can be
calculated using the following equations:

BelY({1}|s) =


0, if θ̂ = 0,
θ̂ − B(θ̂;kc+1,nc−kc+1)

θ̂kc (1−θ̂)nc−kc
, if 0 < θ̂ < 1,

nc

nc+1 , if θ̂ = 1,
(2.22)

PlY({1}|s) =


1

nc+1 , if θ̂ = 0,
θ̂ + B(θ̂;kc+1,nc−kc+1)

θ̂kc (1−θ̂)nc−kc
, if 0 < θ̂ < 1,

1, if θ̂ = 1,
(2.23)

with θ̂ = kc

nc
. Let us recall that the beta functions B and B are given in Eqs. (1.45)

and (1.46).

Example 2.3.1 Figure 2.6 gives an illustration of the multi-dimensional bins obtained
using the evidential joint calibration based on binning. The dataset considered in this
example is the Diabetes dataset of UCI repository [5]. Two SVM classifiers, trained
with 25 examples each, return a score after observing a given example. The number of
bins per classifier is 5, i.e., J = 2 and BM = 5. For the sake of a better visibility, the
cells corresponding to the situation where s1 is high and s2 is low (the opposite is also
true) are set to zero, but it actually corresponds to the case of total ignorance, as there
are no tuple (s1, s2) in X ′ that belongs to these cells. As it can be noticed, the interval
between BelY(.|s) and PlY(.|s) is higher in Figure 2.6a than in Figure 2.6b, i.e., when
there are less examples in the training set.

2.3.2 Joint logistic regression

The logistic regression, exposed in Section 2.2, is used to calibrate a score
given by a single classifier. Yet, the logistic model works as well when more than one
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(a) Calibration trained with 200 examples.

(b) Calibration trained with 50 examples.

Figure 2.6 – Illustration of joint calibration based on binning and trained with 200 and
50 examples, using Diabetes.

input is available: it is then called a multivariable (or multiple) logistic regression [52].
It has been widely used in many applications, such as for instance in the medicine field
[6]. We propose to use this multiple version of logistic regression and apply it to the
vector of scores returned by different classifiers for a given object, in order to calibrate
this vector.

Given a vector of scores s = (s1, s2, ..., sJ), the probabilistic joint calibration
based on multiple logistic regression is defined by

PY(y = 1|s) = 1
1 + e−(σ0+σ1s1+σ2s2+...+σJsJ ) , (2.24)

where the parameter σ= (σ0, ..., σJ) ∈ RJ+1 is obtained by maximizing the likelihood
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function LX ′ defined by
LX ′(σ) =

n∏
i=1

ptii (1− pi)1−ti , (2.25)

with
pi = 1

1 + exp(−(σ0 + σ1s1i + ...+ σJsJi))
, (2.26)

and

ti =
{ N++1

N++2 if yi = 1,
1

N−+2 if yi = 0, (2.27)

where N+ and N− are respectively the number of positive and negative samples in the
training set X ′. The log-likelihood can be used instead of the likelihood, and following
the same gradient ascent algorithm than in Section 2.2 the optimal parameters σ =
{σ0, ..., σJ} can be estimate using the following partial derivatives:

∂`(σ)
∂σ0

=
∑
i

(yi − pi),
∂`(σ)
∂σj

=
∑
i

(yi − pi)sji. (2.28)

We propose to extend this joint logistic-based calibration to the evidential
framework by following the same reasoning as for the single classifier case. The knowl-
edge about σ= (σ0, ..., σJ) can be represented by a consonant belief function whose
contour function is defined by

plΣX ′(σ) = LX ′(σ)
LX ′(σ̂) , ∀σ ∈ Σ. (2.29)

Furthermore, plΘX ′ can be computed from PlΣX ′ :

plΘX ′(θ|s) =
{

0 if θ ∈ {0, 1},
P lΣX ′(h−1

s (θ)) otherwise, (2.30)

with

h−1
s (θ) = {(σ0, σ1, ..., σJ) ∈ Σ|hs(σ) = θ} , (2.31)

=
{

(σ0, σ1, ..., σJ) ∈ Σ| 1
1 + e−(σ0+σ1s1+...+σJsJ ) = θ

}
, (2.32)

=
{

(σ0, σ1, ..., σJ) ∈ Σ|σ0 = −ln(θ−1 − 1)− σ1s1 − ...− σJsJ
}
. (2.33)

Thus, the contour function plΘX ′(θ|s) is defined by

plΘX ′(θ|s) = sup
σ1,...,σJ∈R

plΣX ′(−ln(θ−1 − 1)− σ1s1 − σ2s2 − ...− σJsJ , σ1, ..., σJ), (2.34)

for all θ ∈ [0, 1]. The vector of parameters (σ1, σ2, ..., σJ) which maximizes plΘX ′ can be
approximated using gradient ascent as well, with the following partial derivatives:

∂`(σ)
∂σj

=
∑
i

(yi − p
′′

i )(sji − sj), j = 1, ...J, (2.35)
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where
p
′′

i = 1
1 + e−(−ln(θ−1−1)−σ1s1−...−σJsJ +σ1s1i+...+σJsJi)

, ∀θ ∈ [0, 1]. (2.36)

Finally, the belief and plausibility functions BelY(·|s) and PlY(·|s) can be obtained
through Eq. (1.38) and (1.39).

The computational complexity of gradient ascent algorithm is O(nJ) per
iteration. Thus, we may notice that the computational complexity is much higher in
this joint situation than in the single classifier case. Evaluating the sum-gradient may
require expensive computational cost at every iteration, especially when n is large.
Within this scope, some techniques have been proposed to speed up the computation.
For instance, the use of a dynamic learning rate instead of a fixed one. Indeed, the
role of the learning rate is important as if it is too small, the gradient ascent may
be very slow, and on the contrary if it is too large, gradient ascent might overshoot
the optimum. Thus, to reach the convergence point faster, Barzilai and Borwein [9]
proposed to adapt the value of η in each iteration k with:

η(k) = (σ(k) − σ(k−1))T [∇`(σ(k))−∇`(σ(k−1))]
||∇`(σ(k))−∇`(σ(k−1))||2 . (2.37)

Example 2.3.2 Figure 2.7 shows an example of an evidential joint calibration based
on logistic regression, with J = 2 classifiers. This calibration was first trained with
200 examples (Figure 2.7a) then 50 examples (Figure 2.7b). It can be seen that the
ignorance is higher in Figure 2.7b than in Figure 2.7a as the three layers are more
spaced apart. Furthermore, we can see that, similarly to the joint binning case, the
ignorance is high when s1 is low and s2 high (or the opposite), and especially when
only 50 training examples are taken.

2.4 Experimental results

In this section, the performance of the proposed evidential joint calibration
approach is compared to those of other approaches using different datasets, which are
presented in Section 2.4.1. In Section 2.4.2, our approach is compared to the approach
of Xu et al [116], which consists in transforming the scores provided by different SVM
classifiers into belief functions, using the evidential calibration of a single classifier.
They are then combined using Dempster’s rule of combination. We refer hereafter
to this latter approach as the disjoint method. Both binning and logistic regression
calibrations are studied. Then, in Section 2.4.3, our joint calibration approaches are
compared to a conceptually similar approach, that is a trainable combiner based on
an evidential classifier, i.e., a classifier returning a mass function after observing an
object. Finally, we focus on the calibration based on multiple logistic regression and
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(a) Calibration trained with 200 examples.

(b) Calibration trained with 50 examples.

Figure 2.7 – Illustration of joint calibration based on logistic regression and trained
with 200 (Figure 2.7a) and 50 (Figure 2.7b) examples, Diabetes dataset.

we compare the probabilistic and evidential versions of this joint calibration in Sec-
tion 2.4.4.

2.4.1 Datasets

The experiments are conducted on five binary classification problems pro-
vided by UCI repository [5]. They are all of different sizes, and their sample vectors
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have various number of features, as presented in Table 2.1.

Dataset # instance vectors # features
Australian 690 14
Diabetes 768 8

Heart 270 13
Ionosphere 351 34

Sonar 208 60

Table 2.1 – Number of instance vectors and number of features by vector for different
datasets from UCI.

We also simulated a dataset composed of 360 randomly generated instance
vectors from two bivariate normal distributions, with means µ0 = (−1, 0) in class 0

and µ1 = (1, 1) in class 1, and with a covariance matrix equals to
[

1 0.5
0.5 1

]
for both

classes. An illustration of these data in the feature space are represented in Figure 2.8,
where x and y represent respectively the first and second feature of each instance
vector.

Figure 2.8 – Illustration of 300 instance vectors of the simulated dataset.

2.4.2 Comparison between joint and single calibrations on
UCI datasets

The following experiment follows the same protocol as the first experiment
detailed in [116]. For each dataset, three SVM classifiers are trained on non-overlapping
subsets, using the LIBSVM library [19]. The numbers of examples used for training
and testing for each dataset are described in Table 2.2.
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Dataset # Train 1 # Train 2 # Train 3 # Test
Australian 30 70 10-60-190 400
Diabetes 30 70 10-50-200 468

Heart 20 40 10-50-140 70
Ionosphere 20 40 10-80-190 101

Sonar 20 40 10-40-90 58
Simulated data 20 40 10-50-200 100

Table 2.2 – Number of examples used for training and testing.

For the first two classifiers, the number of training examples is fixed while
different training set sizes are considered for the third one. The training set of each
classifier is partitioned into two equal sized-subsets. One of these subsets is for training
the classifier, and in Xu et al.’s approach the second subset is for training the calibra-
tion of the classifier. In the proposed approach, the joint calibration is trained using
the set composed of the concatenation of each second subset of each classifier.

For each sample belonging to the test set, the three classifiers return a score.
In the disjoint approach, each of these scores is calibrated using the trained calibration
of its corresponding classifier, and the three obtained mass functions are merged into
a final mass function using Dempster’s rule. In our proposed approach, the scores
are grouped into a score vector and this vector is calibrated using a joint calibration,
which directly returns a final mass function. In both cases, the decision corresponds to
the singleton with the highest belief, since we use {0, 1} costs without the possibility
to reject, in which case upper and lower expected costs lead to the same decision.
The error rate is calculated on the test set and corresponds to the number of samples
misclassified over the number of tested samples. The whole process is repeated for 100
rounds of random partitioning, thus the final error rate corresponds to the average of
100 calculated error rates.

For the binning calibration, we may remark that there are in total a number
of BU×J bins in the disjoint case against (BM)J bins for the joint binning. In order to
fairly compare our approach to the disjoint one, the number of bins for each classifier
is chosen such that each method has the same total number of bins. In particular, as
J = 3, we chose respectively BU = 9 and BM = 3 for disjoint and joint approaches.

Figure 2.9 shows the results of the experiments for binning and logistic-based
approaches, in the evidential framework, and for disjoint and joint cases. Results of
the probabilistic version of joint calibrations are also given. As it can be noticed, the
approaches based on the logistic regression are always better than those based on
binning, as their obtained error rates are lower. For binning approaches, the joint case
is not always better than the disjoint case, but it might come from the chosen value
for BM ; with a higher value, the results might be better. For logistic regression, the
evidential joint approach always presents better results than the evidential disjoint
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(a) Australian. (b) Diabetes.

(c) Heart. (d) Ionosphere.

(e) Sonar. (f) Simulated data.

Figure 2.9 – Average error rates using binning and logistic regression, with joint (re-
ferred to as “multi” in the figures) and disjoint (referred to as “Xu” in the figures)
approaches and with both probabilistic and evidential frameworks. The X-axis corre-
sponds to the number of training examples used to train the third classifier.
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approach. It can also be noticed that the probabilistic and evidential joint versions
nearly give the same results in this experiment. Comparison between probabilistic and
evidential versions of calibration based on multiple logistic regression will be performed
in Section 2.4.4.

2.4.3 Comparison between evidential joint calibration and ev-
idential trainable combiner on UCI datasets

In the previous experiment, we compared our approach to its probabilistic
version and to the so-called disjoint method, which belongs to the non trainable com-
biner category. In this section, we perform the same experiment but with the aim of
comparing our results to those of an approach of the same category, i.e., to an evi-
dential trainable combiner. Indeed, there exist other approaches similar to ours to be
compared to, and in particular some methods which can take a score vector as input
and return a belief function on the class of a given observed object.

The other evidential trainable combiner that we consider in this experi-
ment relies on the evidential classifier described in [32] and based on the Generalized
Bayesian Theorem (GBT) [99].

Let us consider a classification problem with Ω = {wk}Kk=1 the finite set
of classes. After observing the feature vector x of an object, the aim is to obtain
a belief function about the class label of this object, based on a training set L =
{(x1, y1), ..., (xn, yn)} where xi represents the feature vector of the ith object, whose
true label is yi. The application of the GBT gives the following MF on Ω about the
class of x [32]:

mΩ(A|x) =
∏
wk∈A

Pl[wk](x)
∏
wk∈A

(1− Pl[wk](x)), ∀A ⊆ Ω, (2.38)

where A denotes the complement of A, and Pl[wk](x) represents the plausibility of
observing x under the hypothesis that the true class is ωk. In particular, Denoeux and
Smets have considered in [32] a special case, where

Pl[wk](x) = N(x, k)
N(k) , (2.39)

with N(x, k) the number of samples in L from class wk contained in a ball Sr of radius
r and centered on x, and N(k) the total number of samples from class wk in L.

We note that it may happen that mΩ(∅|x) > 0, and in that case the MF
mΩ(·|x) can be transformed into a normalized MF MΩ(·|x) using the operation defined
by

MΩ(A|x) = mΩ(A|x)
1−mΩ(∅|x) , ∀A ⊆ Ω, A 6= ∅, (2.40)
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and MΩ(∅|x) = 0.

We now apply this classifier to our binary problem, by taking the same inputs
as for our approach. In particular, after observing a given object, the feature vector is
now the vector of scores s = (s1, ..., sJ) obtained by J classifiers, and the training set
L is now X ′. Using the definition of the MF given in Eq. (2.38) and the considered
particular case of Eq. (2.39), we obtain the MF mY(·|s) defined by

mY({0}|s) = N(s, 0)
N(0) × (1− N(s, 1)

N(1) ), (2.41)

mY({1}|s) = N(s, 1)
N(1) × (1− N(s, 0)

N(0) ), (2.42)

mY({0, 1}|s) = N(s, 1)
N(1) ×

N(s, 0)
N(0) , (2.43)

and
mY(∅|s) = (1− N(s, 0)

N(0) )× (1− N(s, 1)
N(1) ), (2.44)

with N(s, k) the number of samples in X ′ from class k (equal to 0 or 1), contained in a
ball Sr of radius r and centered on s. This MF is then normalized similarly as mΩ(·|x)
is normalized using Eq. (2.40).

We may notice that using a ball Sr to build the MFs has some similarities
with our multivariable version of binning. Let us illustrate this statement with a simple
example, using the dataset Diabetes and with J = 2. Figure 2.10 shows the scores
returned by two trained classifiers for each sample of a given calibration training set.
The X-axis corresponds to the scores given by the first classifier and Y-axis by the
second one. A test sample is illustrated by a blue asterisk, and corresponds to s =
(s1, s2) the values of the scores returned by the two classifiers. The continuous green
lines correspond to the bounds of the joint binning, with BM = 3, and the red circle
represents the ball Sr of the GBT-based classifier, with r = 1 and centered on s. To
build the MF mY(·|s), the joint binning uses the training samples belonging to the bin
containing s, while the GBT-based classifier uses the ones contained by the ball Sr.

We performed the experiment with r = 1, because some preliminary tests
showed that the best results were obtained with this value. Figure 2.11 shows the error
rates for the GBT-based approach, compared to those obtained with our evidential
multivariable versions of binning and logistic regression. As it can be noticed, the
results obtained with the GBT-based classifier are better than those obtained with the
binning approach. It can be explained by the fact that in the binning approach the
bounds of the multi-dimensional bins are fixed, and any test sample belonging to the
same multi-dimensional bin has the same associated MF, no matter where the sample
is positioned in the bin. By contrast, for the GBT classifier, the ball is centered on the
considered test sample, so the neighbourhood of the test sample is taken into account
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Figure 2.10 – Illustration of the multidimensional bins and the ball Sr, using Diabetes
dataset.

in a better way. Furthermore, with other values of r or with other size and number
of our multi-dimensional bins, the obtained results may vary significantly, as these
approaches highly rely on these parameters. Finally, we can see that the evidential joint
calibration using logistic regression is always better than the GBT-based approach in
our experiments.

2.4.4 Comparison between evidential and probabilistic ver-
sions of joint calibration on UCI datasets

As seen in Sections 2.4.2 and 2.4.3, the evidential joint logistic-based cali-
bration always presents the best results. Yet, we also noted (in Section 2.4.2) that
the performance of the probabilistic version of this calibration were nearly the same.
Thus, in this section, probabilistic and evidential versions of the calibration based on
the multiple logistic regression are further compared. To do that, we introduce the
possibility of a third decision for the system given a test sample, by allowing a reject
option. Hence, for a given test sample, three possible decisions can be returned: 0, 1,
or R. This reject option R expresses doubt and is used for some examples that are
difficult to classify. In addition, as recalled in Chapter 1, there are different decision-
making criteria in the evidential framework and thus the evidential approach has two
possible strategies of decision, either pessimistic or optimistic.

Using the simulated dataset previously defined, 290 training examples were
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(a) Australian. (b) Diabetes.

(c) Heart. (d) Ionosphere.

(e) Sonar. (f) Simulated data.

Figure 2.11 – Average error rates using binning and logistic regression, with evidential
joint approaches. The X-axis corresponds to the number of training examples used to
train the third classifier.
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generated: three SVM classifiers were trained with three non-overlapping subsets of
30 training examples of this set, and the joint calibration using logistic regression was
trained with the remaining 200 examples of this set. Then, the same experiment was
performed but the joint logistic-based calibration was trained with 15 examples instead
of 200. The decision frontiers for both the pessimistic and optimistic strategies and for
both cases are illustrated in Figure 2.12 for Rrej = 0.15.

(a) Joint logistic-based calibration trained with 200 training samples.

(b) Joint logistic-based calibration trained with 15 training samples.

Figure 2.12 – Decision frontiers in feature space of the probabilistic and evidential
joint calibrations based on logistic regression trained with 200 (2.12a) and 15 training
examples (2.12b), and with Rrej = 0.15.

As it can be seen, the evidential joint calibration based on the optimistic
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strategy tends to reject less the test samples than the two others. It is the exact opposite
for the evidential joint calibration based on the pessimistic strategy, which decide to
reject in more cases. The probabilistic approach is between these two. Furthermore,
the frontiers associated to the pessimistic and optimistic strategies are a lot more
distant from each other in Figure (2.12b) than in Figure (2.12a), i.e., when there are
less examples to train the joint calibration and thus more uncertainties. Probabilistic
approach is only represented by one frontier so the impact of the uncertainties is
not visible. Thus, the evidential approach better reflect the uncertainties than the
probabilistic one.

Let us illustrate this point further. The three SVM classifiers were still trained
with three non-overlapping subsets of 30 training samples, and the calibration with 200
then 15 samples. We calculated the error rate and accuracy rate for 100 test samples
and with Rrej = 0.15. Accuracy rate represents the number of correctly classified
objects over the number of classified objects, i.e., not over the total number of test
examples as some of them are rejected. The whole process was repeated for 100 rounds
of random partitioning. The obtained average rates are presented in Figure 2.13.

(a) 200 training examples (b) 15 training examples

Figure 2.13 – Obtained error rates for Rrej = 0.15 and with 200 (2.13a) and 15 (2.13b)
training examples.

As it can be seen in Figure 2.13, if there are a lot of examples to train the
joint calibration, the obtained error rates are almost equal. Yet, when less training
examples are available, the two points obtained for the evidential approach are more
distant from each other. This interval reflect the uncertainties, as when it is larger the
uncertainties are more important. This information cannot be obtained with the prob-
abilistic calibration, as it is represented by only one point. Thus, the joint calibration
based on evidence theory better reflect the uncertainties.

Finally, we performed a similar experiment with Rrej varying from 0 to 1, on
five datasets (Australian, Diabetes, Heart, Ionosphere, Sonar) of UCI repository [5] and
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on the simulated dataset. The only difference with the previous experiment is that the
multivariable logistic regression was trained with 45 (instead of 200 previously) then
15 samples. Due to the size of Sonar, it was tested on 50 sample tests instead of 100
for the other datasets. The whole process was carried out for 100 rounds of random
partitioning and Figures 2.14 and 2.15 show the obtained results.

As it can be noticed, for a given error rate, the results obtained with the
pessimistic strategy has a higher (or equal) accuracy rate than the probabilistic cali-
bration when few training examples are available (right columns of Figures 2.14 and
2.15). Let us underline that for a fixed error rate, the accuracy rates obtained with the
probabilistic calibration and the pessimistic strategy are obtained for different values of
Rrej (as seen in the previous experiment, the results of which are given in Figure 2.13,
a given value of Rrej leads in general to different error rates). Furthermore, when the
number of training examples is more important (left columns of Figures 2.14 and 2.15),
the obtained results become similar for the probabilistic and evidential approaches, as
should be.

2.5 Conclusion

In this chapter, we have recalled the extension to the evidential framework of
the usual calibration techniques proposed by Xu et al. in [116]. Given a score returned
by a single classifier, these techniques return a belief function. We proposed then
to use the multivariable version of the techniques underlying the calibrations and to
apply it, in the evidential framework, to the concatenation of the scores returned
by multiple classifiers for a given object. Our approach was compared to Xu et al.’s
disjoint approach, which independently calibrates the scores of SVM classifiers using
the evidence theory and combines the obtained mass functions using Dempster’s rule
of combination. We compared also our proposed method to an approach belonging to
the trainable combiner category and based on an evidential classifier. In both cases,
the obtained results for our evidential joint calibration based on logistic regression
either are better or are comparable to that of the other approaches. Furthermore,
by introducing the possibility to reject a test sample, we showed the advantages of
the evidential multivariable logistic-based calibration over the probabilistic version: it
models more precisely the uncertainties and it exhibits better performances.

In this first main part of this report, we began by exposing the main concepts
of belief function theory, which is a well established formal framework for reasoning
with uncertainty. Then, we recalled how this framework has been used to propose
evidential extensions of the existing techniques regarding score calibration. We exposed
a new approach for combining scores based on this evidential calibration approach but
without the use of a rule of combination. The presented approaches were applied in a
binary classification problem to the calibration of SVM classifiers, but they may also



CHAPTER 2. EVIDENTIAL CALIBRATION OF SCORES 63

(a) Simulated data – 45 training samples (b) Simulated data – 15 training samples

(c) Australian – 45 training samples (d) Australian – 15 training samples

(e) Diabetes – 45 training samples (f) Diabetes – 15 training samples

Figure 2.14 – Obtained error rates with 45 training samples (left) and 15 training
samples (right) for the simulated dataset, Australian and Diabetes.
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(a) Heart – 45 training samples (b) Heart – 15 training samples

(c) Ionosphere – 45 training samples (d) Ionosphere – 15 training samples

(e) Sonar – 45 training samples (f) Sonar – 15 training samples

Figure 2.15 – Obtained error rates with 45 training samples (left) and 15 training
samples (right) for Heart, Ionosphere and Sonar.
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be applied to any other binary classifiers returning scores. As a matter of fact, in the
second part of this report, we will see how these techniques can be applied for the
considered issue, i.e., face blurring.





Part II
Application to face blurring
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3.1 Introduction

Due to legal reasons, faces in a given image may have to be blurred. Yet, it
can rapidly become a tedious task if it is done manually, especially if there is a large
amount of images to process. A solution may consist in using a face detection system,
which aims to automatically find the positions of the faces in a given image.

Since the early 2000s, there has been significant research on face detection
and many algorithms have been proposed, in particular based on machine learning
techniques, such as the well-known Viola and Jones approach [110] or the neural
network-based approach proposed by Rowley et al. [90]. Recently, more elaborate al-
gorithms based on deep convolutional neural networks [39, 117, 123] made a major
breakthrough in the field. An overview of the state-of-the-art concerning face detec-
tion can be found in Appendix A. Yet, another path of research consists in merging
information given by multiple sources, whether situated at the pixel level or directly
on the faces [1, 41, 73, 104]. Indeed, since sources, such as face detectors, generally pro-
vide complementary information, using several of them is a means to improve overall
performance.

There are many different ways to perform the fusion of some given infor-
mation. Among them, in the context of pedestrian detection, Xu et al. [114] recently
proposed a well-founded and general approach. In this approach, for a given image
each used detector provides a set of bounding boxes corresponding to the assumed
positions of the pedestrians, as well as a confidence score for each of these boxes. The
main idea is then to use score calibration in order to be able to combine these cal-
ibrated scores afterwards, and to obtain better detection performance. Of particular
interest is that the combination of this approach relies on evidence theory. Hence, by
replacing the calibration procedure in [114] by the evidential ones, and by applying
to faces the general detection approach introduced in [114], one obtains what may be
considered presently as a state-of-the-art face detection system based on multiple de-
tectors. Nonetheless, despite its appeals, we note that such a system suffers from two
main limitations inherited from Xu et al.’s approach [114]. First, it is designed to han-
dle only detectors providing bounding boxes, i.e., it can not integrate directly sources
providing information at the pixel level. Second, this approach relies on a parameter
(so-called overlap threshold) necessary in the handling of boxes.

Using a face detection system is a natural means to solve the face blurring
problem. However, we may remark that this problem is not exactly equivalent to face
detection: face blurring amounts merely to deciding whether a given pixel belongs to
a face, whereas face detection amounts to determining whether a given set of pixels
corresponds to the same face. This remark opens the path for a different approach to
reasoning about blurring, which may then be situated at the pixel-level. Within this
scope, we propose in this chapter a face blurring system, which consists essentially in
applying at the pixel-level the central idea and contributions of Xu et al. [114, 116], i.e.,
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combining evidentially calibrated information sources. As it will be seen, this pixel-level
perspective presents several conceptual advantages over operating at the box-level. In
particular, sources providing pixel-level information can be directly integrated and the
parameter necessary in the handling of boxes can be avoided.

This chapter is organized as follows. Section 3.2 exposes the system perform-
ing face detection using Xu et al.’s evidential box-based detection approach [114],
improved using Xu et al.’s evidential calibration [116], i.e., calibration exposed in
Chapter 2. In Section 3.3, our proposed pixel-based face blurring system is detailed
and its fundamental differences with respect to blurring using Xu et al.’s box-based ap-
proach are discussed. The performances of the box-based and pixel-based approaches,
given the same input information, are then compared in Section 3.5.2 on two image
datasets (one from the literature and one composed of railway platforms images com-
ing from SNCF). The ability of the proposed approach to integrate directly pixel level
information is illustrated in Section 3.5.3 on these same two datasets with a classical
feature regarding face detection. We detail in Section 3.4 how the evidential joint ap-
proach of calibration that we described in Chapter 2 can be applied to the context
of face detection. In particular, Section 3.5.4 compares the results of disjoint and the
joint pixel-based approaches on the two datasets. Finally, conclusions and perspectives
are given in Section 3.6.

3.2 An evidential box-based face detection ap-
proach

Face blurring may be achieved using simply the boxes returned by a face de-
tection system. In this section, we present such a system, which may be considered as
a state-of-the-art system with respect to face detection based on multiple detectors re-
turning box information and using the evidential framework. In a nutshell, this system
is merely Xu et al. [114] evidential box-based detection approach, whose calibration
step has been replaced by the evidential likelihood-based logistic regression calibration
procedure proposed in [116] and recalled in the Chapter 2 of this report. This section
provides first an overview of this approach and then details some of its steps.

3.2.1 Overview of the approach

Let us consider a given image and assume that J face detectors are run on
this image. Formally, each detector Dj, j = 1, ..., J , provides Nj couples (Bi,j, Si,j),
where Bi,j denotes the ith box, i = 1, ..., Nj, returned by the jth detector and Si,j is
the confidence score associated to this box.
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Through a calibration procedure using a training set which will be described
in Section 3.2.2, score Si,j is transformed into a MF mBi,j defined over the frame
Bi,j = {0, 1}, where 1 (resp. 0) means that there is a face (resp. no face) in box Bi,j.

Then, using a clustering procedure detailed in Section 3.2.3, all the boxes Bi,j

returned by the J detectors for the considered image, are grouped into K clusters Ck,
k = 1, ..., K, each of these clusters being represented by a single box Bk.

In addition, for each box Bi,j ∈ Ck, its associated MF mBi,j is assumed to
represent a piece of evidence regarding the presence of a face in Bk, that is, mBi,j

is converted into a MF mBk
i,j on Bk = {0, 1} defined by mBk

i,j (A) = mBi,j (A), for all
A ⊆ {0, 1}. These pieces of evidence are then combined using Dempster’s rule:

mBk =
⊕
i,j

mBk
i,j . (3.1)

The combination results in a MF mBk representing the overall system uncertainty with
respect to the presence of a face in Bk. We note that the use of Dempster’s rule is
appropriate when the sources may be considered to be independent and reliable. More
complex combination schemes are also considered in [114]. However, only Dempster’s
rule, which presents good performance in [114], is considered here.

Figure 3.1 – Illustration of the box-based approach

The three main steps of the approach, namely calibration, clustering and
fusion, are illustrated in Figure 3.1. For the sake of simplicity only two detectors,
each returning two boxes, are considered in this example. Bi,j corresponds to the ith
box, i = 1, 2, returned by the jth detector j = 1, 2, and which has Si,j as associated
score. In this scenario, the boxes B1,1 and B1,2 are grouped into the same cluster C1,
represented by the box B1. Their associated scores, transformed into mass functions,
are combined and result in the final mass function mB1

1,1 ⊕ mB1
1,2, which is denoted by

mB1 . The other boxes B2,1 and B2,2 form their own clusters, respectively represented
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by B2 and B3. Finally, for each resulting box with its associated MF, a decision has
to be made whether the box has to be blurred or not; it may be done using one of the
decision strategy given in Chapter 1 and in particular using Eq. (1.14) for some cost
function c.

3.2.2 Box-based score calibration for a detector

In order to transform the score Si,j associated to a box Bi,j into a MF mBi,j ,
detector Dj needs to be calibrated. In particular, the evidential logistic regression cal-
ibration procedure recalled in Chapter 2 may be used instead of the cruder procedures
used in [114]. This procedure requires a training set, which we denote by Lcal,j. We
detail below how Lcal,j is built.

Assume that L images are available. Besides, the positions of the faces really
present in each of these images are known in the form of bounding boxes. Formally,
this means that for a given image `, a set of M ` boxes G`

r, r = 1, ...,M `, is available,
with G`

r the rth bounding (ground truth) box on image `.

Furthermore, detector Dj to be calibrated is run on each of these images,
yielding N `

j couples (B`
t,j, S

`
t,j) for each image `, where B`

t,j denotes the tth box, t =
1, ..., N `

j , returned on image ` by detector Dj and S`t,j is the confidence score associated
to this box.

From these data, training set Lcal,j is defined as the set of couples (S`t,j, Y B`
t,j),

` = 1, ..., L, and t = 1, ..., N `
j , with Y B`

t,j ∈ {0, 1} the label obtained by evaluating
whether box B`

t,j “matches” some face in image `, i.e.,

Y B`
t,j =

{
1 if ∃G`

r, r = 1, ...,M `, such that ov(G`
r, B

`
t,j) ≥ λ,

0 otherwise,

where λ is some threshold in (0, 1) and ov(G`
r, B

`
t,j) is a measure of the overlap between

boxes G`
r and B`

t,j. It is defined by [37]

ov(B1, B2) = area(B1 ∩B2)
area(B1 ∪B2) , (3.2)

for any two boxes B1 and B2. Informally, Lcal,j stores the scores associated to all the
boxes returned by detector Dj on images where the positions of faces are known, and
records for each score whether its associated box is a true or false positive. It is then
clear that the MF mBi,j associated to a new score Si,j and obtained from calibration
relying on Lcal,j, represents uncertainty toward box Bi,j containing a face.
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3.2.3 Clustering of boxes

As several detectors are used, some boxes may be located in the same area of
an image, which means that different boxes assume that there is a face in this particular
area. The step of clustering allows one to group those boxes and to retain only one per
cluster. A greedy approach is used in [114], based on the work of Dollar et al. [34]: the
procedure starts by selecting the box Bi,j with the highest mass of belief on the face
hypothesis, i.e., the box Bi,j such that mBi,j ({1}) > mBu,v({1}),∀(u, v) 6= (i, j), and
this box is considered as the representative of the first cluster. Then, each box Bu,v,
∀(u, v) 6= (i, j), such that the overlap ov(Bi,j, Bu,v) is above the threshold λ, is grouped
into the same cluster as Bi,j, and is then no longer considered for further associations.
Among the remaining boxes, the box Bi,j with the highest mBi,j ({1}) is selected as
representative of the next cluster, and the procedure is repeated until all the boxes are
clustered.

3.3 Evidential pixel-based approach

The approach exposed in the previous section is general and well-founded. It
is designed for detectors returning boxes, but it does not allow to directly integrate
pixel-based information. Besides, as explained in the introduction of this chapter, for
the purpose of blurring it seems interesting to work at the pixel level rather than
box level. Thus, the idea of the approach proposed in this section is to use elements
from the previous system, in particular the evidential calibration and fusion, and to
apply them at the pixel level. This section first exposes an overview of the proposed
approach. Then, in order to be able to compare subsequently the proposed pixel-based
approach to the previous system, we detail how the same input information as in the
previous section, i.e., boxes and scores returned by detectors, can be used within our
pixel-based approach. Finally, fundamental differences between the two approaches are
discussed.

3.3.1 Overview of the approach

To each pixel px,y in an image, we associate a frame of discernment Px,y =
{0, 1}, where x and y are the coordinates of the pixel in the image and 1 (resp. 0) means
that there is a face (resp. no face) in pixel px,y. For the pixel px,y, J mass functions
are obtained on Px,y from J detectors. They are then combined using Dempster’s rule
of combination, resulting in the MF denoted mPx,y , i.e,

mPx,y =
J⊕
k=1

m
Px,y

k , (3.3)
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with mPx,y

k the MF representing the uncertainty with respect to the presence of a face
in the pixel px,y for the kth source. Each MF m

Px,y

k , k = 1, . . . , J, is obtained using
the calibration method corresponding to the type of the outputs of the kth source.
Specifically, if the source gives a score information, the MF is obtained through the
evidential logistic regression calibration, using a training set L composed of couples
(Xi, Yi), with Xi the score associated to the ith object which is now a pixel, and Yi its
true label. Otherwise, if the source does not return a score, we propose to calibrate
this information of score absence; this is further explain in the next section.

3.3.2 Face detection as input to our approach

Consider strictly the same input information as in Section 3.2, that is J
detectors each returning a set of bounding boxes with associated scores corresponding
to the assumed positions of the faces. This section exposes how our approach can be
applied in that case.

For a given pixel in an image and a given detector, two exclusive situations
occur: either the pixel px,y is contained by one of the box Bi,j returned by the detec-
tor, or it is not. If it is contained by a box Bi,j, the score Si,j of the box is associated
(“transferred”) to the pixel. If the pixel does not belong to any box, no score is asso-
ciated to it. As a consequence, the considered pixel either has an associated score, or
it does not. These two situations are now detailed.

In the first case, when a score is available for the considered pixel, it is
transformed into a MF using the evidential logistic regression and a training set, that
we denote LcalP,j. Let us describe this set LcalP,j underlying the transformation using
calibration of a score Si,j associated to a pixel px,y by a detector Dj, into a MF m

Px,y

i,j .
For a given image `, each couple (B`

t,j, S
`
t,j) introduced in Section 3.2.2 yields, via

“transfer”,
∣∣∣B`

t,j

∣∣∣ couples (p`d,t,j, S`t,j), with d = 1, . . . ,
∣∣∣B`

t,j

∣∣∣, and
∣∣∣B`

t,j

∣∣∣ the number of
pixels in box B`

t,j, and where p`d,t,j denotes the pixel in dth position in box B`
t,j. From

these data, we define LcalP,j as the set of couples (S`t,j, Y P `
d,t,j), with ` = 1, . . . , L,

t = 1, . . . , N `
j , and d = 1, . . . ,

∣∣∣B`
t,j

∣∣∣, with Y P `
d,t,j ∈ {0, 1} the label simply obtained by

checking whether pixel p`d,t,j belongs to some ground truth box G`
r in the image `, i.e,

Y P `
d,t,j =

{
1 if ∃ G`

r, r = 1, . . . ,M `, such that p`d,t,j ∈ G`
r,

0 otherwise. (3.4)

LcalP,j may pose a complexity issue as |LcalP,j| = ∑L
`=1

∑N`
j

t=1

∣∣∣B`
t,j

∣∣∣. To avoid this, one
may use a smaller set L′calP,j ⊂ LcalP,j, which represents roughly the same information
as LcalP,j and built as follows: for each triple (`, t, j), only 10 couples among the couples
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(S`t,j, Y P `
d,t,j), d = 1, . . . ,

∣∣∣B`
t,j

∣∣∣, are selected such that the ratio
∣∣∣{Y P `

d,t,j|d = 1, ...,
∣∣∣B`

t,j

∣∣∣ , Y P `
d,t,j = 1}

∣∣∣∣∣∣{Y P `
d,t,j|d = 1, ...,

∣∣∣B`
t,j

∣∣∣ , Y P `
d,t,j = 0}

∣∣∣ (3.5)

is preserved. L′calP,j has then a size of
∣∣∣L′calP,j∣∣∣ = 10∑L

`=1N
`
j .

Let us now consider the second situation, where a pixel is not contained by any
of the boxes and thus does not have an associated score. Since it should be taken into
account that detectors do not present the exact same performances (in particular, some
may have many more pixels not in boxes than others), it seems interesting to calibrate
this kind of outputs from detectors, i.e., we propose to calibrate the information of
score absence. Specifically, the training set, denoted L∗,j, necessary for this calibration
is obtained using L images on which the detector Dj is applied. The number nj of
pixels of these images, which are not contained by any of the boxes returned by the
detector Dj, can be obtained. As the ground truth of these L images is known, their
associated true label Yi is available. Using L∗,j, it is then possible to obtain a MF,
denoted mPx,y

∗,j , and representing the uncertainty with respect to the presence of a face
on pixel px,y when this pixel is not included in a box of detector Dj. Specifically, if
we denote by TN (True Negative) the number of pixels correctly classified on these
images as non-face and FN (False Negative) the number of pixels classified as non-face
but actually belonging to a face, the MF m

Px,y

∗,j can be defined by

m
Px,y

∗,j ({0}) = TN

TN + FN + 1 , m
Px,y

∗,j ({1}) = FN

TN + FN + 1 . (3.6)

Equation 3.6 may be seen as the binning calibration extended to the evidential frame-
work using the model of Dempster [25].

3.3.3 Comparison of both approaches

The proposed pixel-based approach presents several advantages over the one
of Section 3.2. First, as can be seen in Section 3.3.2, the construction of the training
set for calibration in case of pixels avoids the use of the parameter λ, whose value
needs to be fixed either a priori (but then it is arguably arbitrary) or empirically.

Furthermore, our approach avoids the use of the clustering step, which also
involves the parameter λ and that may behave non optimally in a multi-object situa-
tion, especially when they are close to each other, which may be the case with faces
in a crowd.

In addition, it allows us to have an arguably more consistent modelling of
box absence than the box-based method. Indeed, in this latter method, for a given
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area in an image, there are two different modellings of box absence depending on the
situation: either none of the detectors has provided a box, in which case the area is
considered as non face, which amounts to considering that the detectors know that
there is no face; or only a subset of the detectors has provided a box, in which case the
other detectors are ignored, which is equivalent (under Dempster’s rule) to considering
that these detectors know nothing. By contrast, in the proposed method, the use of
calibration enables us to take into account in a consistent manner the information of
score absence into the fusion process, as when a detector Dj does not return a box for
a given pixel px,y, its associated MF m

Px,y

∗,j is considered regardless of the outputs of the
other detectors for this pixel. Thus, all detectors are involved in each fusion. Figure 3.2
illustrates this point, highlighting the differences with the previous approach.

Figure 3.2 – Illustration of the pixel-based approach

For the sake of simplicity only one pixel, at the position (x1, y1), is considered
here. Pixel px1,y1 is contained by the box B2,1, with S2,1 as associated score, so the
corresponding mass function is obtained through the evidential logistic regression.
However, there is no box containing px1,y1 for the second detector, and thus it does
not have an associated score. Yet, the opinion of the second detector is still taken into
account via the MF m

Px1,y1
∗,2 defined in Section 3.3.2.

As explained before, one of the disadvantages of the box-based approach is
that the integration of a pixel-based information is not straightforward. In the proposed
system however, a source of information which gives pixel-based information can be
integrated into the fusion process as easily as a box-based information. It will be
illustrated with an experiment in Section 3.5.3.

Nonetheless, let us note that while our approach presents some interests over
box-based methods for the problem of face blurring, these latter methods provide more
information (specifically, they isolate faces) and are thus relevant for other problems,
such as face recognition. Furthermore, we note that locating the approach at the pixel
level brings potentially a complexity issue. This will be discussed in Section 3.5.
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3.4 Joint evidential pixel-based approach

Both approaches presented in the previous sections, either the box-based one
or the proposed pixel-based one, have a common point: they independently calibrate
the scores returned by the classifiers before combining them. In the second chapter of
this report, we have presented an evidential joint calibration that we tested on UCI
datasets and which has presented interesting results. Thus, in this section we propose
to apply at a pixel-level this approach with face detection as inputs, i.e., bounding
boxes and scores returned by detectors.

3.4.1 Overview of the approach

As for the approach of section 3.3, to each pixel px,y in an image we associate
a frame of discernment Px,y = {0, 1}, where x and y are the coordinates of the pixel
in the image and 1 (resp. 0) means that there is a face (resp. no face) in pixel px,y.
For the pixel px,y, only one mass function mPx,y is obtained on Px,y regardless of the
number J of independent detectors, with mPx,y the MF representing the uncertainty
with respect to the presence of a face in the pixel px,y. This MF is obtained using the
evidential joint logistic regression calibration with as input the concatenation of all
the outputs returned by the J detectors. The step of fusion using a predetermined rule
is no longer necessary. The set necessary to train the joint calibration is composed by
L2 = {(X11, X12, ...X1j, Y1), ..., (Xn1, Xn2, ...Xnj, Yn)}, where Xnj the output associated
to the nth object returned by the jth detector, and Yn its true label. This training set
can be built using the same reasoning than in the disjoint case, i.e., by running the J
detectors on L annotated images.

3.4.2 Face detection as input to our approach

We still consider the same input as in Sections 3.2 and 3.3, i.e., J detectors
returning bounding boxes with associated scores. For a given pixel in an image and a
given detector, there are only two possibilities: either the pixel px,y is contained by a
box Bi,j returned by the detector, or it is not. If it is contained by a box Bi,j, the score
Si,j is available, but if the pixel does not belong to any box, no score is associated
to it. In that case, we decided to interpret the score absence as a score having a very
low value, as a score is necessary for the logistic regression. When a detector returns
a score, even the smallest one is strictly superior to zero, thus we arbitrarily chose
S∗,J = 0. The concatenation of the J scores, that are either values or null, is then used
as input of the joint calibration, which then gives a corresponding MF for each pixel
that is at least contained by one box.

Figure 3.3 illustrates this approach in a very simple case. For the sake of
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Figure 3.3 – Illustration of the pixel-based approach

simplicity only one pixel, at the position (x1, y1), is considered here. Pixel px1,y1 is
contained by the box B2,1, with S2,1 as associated score. However, there is no box
containing px1,y1 for the second detector, and thus it does not have an associated
score. As we only kept the positive values of scores of all the outputs of our detectors,
we attribute the value zero as score to this detector. Thus, the input for the joint
calibration is (S2,1, 0) and the output is the MF mPx,y .

One of the disadvantage of that approach is that it is more difficult to add a
classifier as all the joint calibration needs to be re-trained, i.e., a new dataset L2 needs
to be entirely rebuilt while in the disjoint case only the calibration of the considered
new classifier has to be trained. Let us note that a common point between these joint
and disjoint approaches is that all detectors are involved in each fusion, whether it
returns a box for the considered pixel or not. Yet, the particular case of score absence
is not taken into account in the same way; in the disjoint case, this information is
calibrated, i.e., we learn the MF that represents this information, and then we merged
it with the other MFs, while in the joint case we consider that it corresponds to a low
score and it is directly integrated in the calibration process. Furthermore, the use of
a joint calibration enables us to take into account in a consistent manner the relation
between the different detectors. For instance, the joint calibration may learn that a
given detector a and detector b do not often give boxes on the same area, but when
they do, it is very likely to actually correspond to a face.
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3.5 Experimental results

In this section, the results of the proposed pixel-based approach are presented
and compared to those of the box-based method, when all available inputs are box-
based information. The experiment is performed on a literature dataset as well as on
another dataset, composed of images coming from cameras filming railway platforms.
The experiment is first described, then the results are discussed. Then, a classical pixel-
based information is added to the system. Finally, our proposed disjoint pixel-based
approach is compared to the joint one.

3.5.1 Description

An overview of the state-of-the-art regarding face detection is given in Ap-
pendix A. We selected four classical face detectors following their popularity and their
availability on open source code. The first selected detector is the one proposed by Viola
and Jones [110], which is based on the classification algorithm called Gentle Adaboost
and that uses Haar feature extraction. The second detector is a variant of the previous
one: the same classification algorithm is used but with Local Binary Patterns (LBP)
feature extraction [47]. They are both provided by the library OpenCV [13]. Further-
more, an improved HOG+SVM-based algorithm provided by DLIB library [65] was
also selected. It is actually the HOG+SVM approach of Dalal and Triggs [22], where
the version of HOG features method was replaced by the one exposed in [42]. Finally,
the fourth and last selected detector was a deep neural network classifier recently pro-
posed in [59]. It is based on a compact design of a convolutional neural network and a
cascade approach and aims to have a reasonable time processing.

We used a literature dataset called Face Detection Data Set and Benchmark
(FDDB) [54], which contains the annotations (ground truth) for 5171 faces in a set
of 2845 images, in order to train both Adaboost-based detector with the same 2000
images of this dataset. 200 other images were used for the calibration of the four
detectors. The performances of the box-based and pixel-based approaches were then
evaluated over the remaining 645 images. The third detector, i.e., the HOG+SVM
approach provided by DLIB library, was pre-trained by the authors using the dataset
called “Labelled Faces in the Wild” [53]. The DNN-based detector was also trained by
the authors using the “YouTube Faces Database” [113].

We also created a dataset of 600 images that we extracted from videos pro-
vided by the EAS system. These images, which we refer to as SNCF images, contain
multiple different conditions such as indoor and outdoor environment, different light
settings and low image quality. This is thus a more challenging dataset than FDDB.
The true positions of the 1089 faces on these images have been manually annotated.
We used the same detectors as for FDDB experiment, i.e., trained with FDDB faces
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or other datasets. Let us note that training these algorithms with face images taken
from the SNCF dataset would lead in principle to better detection rates, but we did
not have enough available annotated faces. Nonetheless, we calibrated these detectors
using 100 annotated SNCF images. Performance tests were then conducted over the
remaining 500 images.

Figure 3.4 shows an example of bounding boxes and associated scores re-
turned by the four selected detectors on some images extracted from SNCF videos.
The Haar+Adaboost detector is represented in red, the LBP+Adaboost detector in
yellow, the HOG+SVM in green and finally the DNN in blue. In compliance with the
confidentiality requirements, only SNCF employees are present in these images.

As seen in the previous section, the box-based approach returns MFs associ-
ated to boxes while our approach gives an MF for each pixel. Whatever the approach,
to decide if a given pixel or a given box has to be blurred or not, we use the decision
procedure relying on upper expected costs recalled in Chapter 1; in a binary case, they
are simply defined by

R∗({0}) = mΩ({1})c(0, 1) +mΩ({0, 1})c(0, 1), (3.7)

R∗({1}) = mΩ({0})c(1, 0) +mΩ({0, 1})c(1, 0), (3.8)
by considering that the cost is equal to zero when the answer is correct (c(0, 0) =
c(1, 1) = 0). As our purpose is to minimize the number of non-blurred faces, it is worse
to consider a face as non-face than the opposite. In other words, decisions were made
with costs such that c(1, 0) <= c(0, 1). More specifically, we fixed c(1, 0) = 1 and
gradually increased c(0, 1) starting from c(0, 1) = 1, to obtain different performance
points. To quantify performances, we used the recall rate (proportion of pixels correctly
blurred among the pixels to be blurred) and the precision rate (proportion of pixels
correctly blurred among blurred pixels).

3.5.2 Comparison between box-based and pixel-based ap-
proaches on FDDB and SNCF databases

Figure 3.5 compares the results of the four selected detectors taken alone to
that of our approach relying on a combination of their outputs, on the FDDB dataset.
As it can be seen, the fusion of the four detectors outputs considerably increased the
performances, as for example a precision of 80% gives a recall of around 52% for the
Haar/Adaboost detector instead of 77% for the combination result. Let us note that
the performances of the deep neural network face detector are only represented by a
point because all the scores returned by this detector were similar, thus all the boxes
have the same associated MF and increasing the cost c(0,1) (the cost of deciding not
to blur a pixel while it has to be) does not gradually increase the number of blurred
pixels.
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Figure 3.4 – Example of results returned by the four selected detectors.
Haar+Adaboost detector is in red, LBP+Adaboost in yellow, HOG+SVM in green
and DNN in blue.
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Figure 3.5 – Pixel-based approach vs detectors on FDDB.

Figure 3.6 shows the result for the same experiment but this time on the
SNCF dataset. The conclusion is the same as the proposed approach has better per-
formances than the detectors taken alone. Let us remark that their performances could
be improved by training them with face and non-face images closer to those encoun-
tered in the SNCF dataset.

Figure 3.6 – Pixel-based approach vs detectors on SNCF dataset.

Comparison on the FDDB dataset between the box-based approach used with



84 3.5. EXPERIMENTAL RESULTS

different values of the overlap threshold λ and our approach is shown in Figure 3.7.
As it can be noticed, for a same precision rate, the recall of our approach is always
the highest. Figure 3.8 shows the results of this comparison on the SNCF dataset; the
conclusions are the same.

Figure 3.7 – Pixel-based approach vs box-based approach on FDDB.

Figure 3.8 – Pixel-based approach vs box-based approach on SNCF dataset.

Let us note that reasoning at the pixel level rather than with boxes as in the
box-based approach may involve a complexity issue. Indeed, as the fusion is performed
on every pixel instead of on sets of boxes, the proposed approach has a priori a higher
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complexity. For the pixel approach and for a given image, the number of operations is
equal to J×a, where J the number of fusion operations (which is equal to the number
of used detectors) and a the number of pixels in the image. By contrast, in the box-
based approach, the complexity is O(b2), with b the total number of boxes returned
by J detectors. Indeed, at worst the clustering procedure is O(b2) [34] and this is the
most costly step. Thus, at first glance, it seems that the complexity is much higher for
the proposed approach as a is generally significantly higher than b2. However, any two
pixels px,y and px′,y′ that do not belong to any box of Dj have associated MFs with
the same definitions, i.e., we have mPx,y

∗,j (A) = m
Px′,y′
∗,j (A), for all A ⊆ {0, 1}. Thus,

pixels that do not belong to any of the returned boxes by the detectors have the same
resulting MF. This latter case happens often in practice, hence this allows us to have
a common processing. For instance, in a set of 200 images of FDDB, with the four face
detectors considered in our experiment, it corresponds on average at around 80% of
the pixels of the image. In terms of time processing, an image takes on average around
120 milliseconds to process (including the time of detection of the four detectors) for
the box-based approach and 150 milliseconds for the proposed system; we consider
that it is a reasonable difference.

This section showed that given the same information,i.e., detectors returning
boxes, the proposed approach gives better results than the box-based approach. Our
approach is a little more time-consuming but the difference is reasonable. The following
section illustrates another advantage of our approach, which is its ability to integrate
directly sources providing pixel-based information.

3.5.3 Addition of pixel-based information on disjoint ap-
proaches on FDDB and SNCF databases

Color information can be useful for the face blurring problem as the color
of the faces, the skin tone, is very distinct from other colors. It is thus an interesting
information that can be used to detect skin, and thus faces, in complex scene images.
It is actually a widely studied subject and some surveys can be found in [15, 56, 106].
We used the same detector as in [101], where the RGB values are transformed to
Normalized Color Coordinates (NCC), i.e.,

r = R

R +G+B
, g = G

R +G+B
. (3.9)

Pixels with chromaticity (r, g) are then classified as skin pixels or not using a threshold
rule given in [101]. We used the same parameters given in [101] for FDDB experiments
and recalculate some using a dataset of skin pixel values for SNCF experiment. It
gives a detector that returns a binary image, which pixels are either classified as skin
or non-skin.
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In order to combine this color information with the other detectors, a mass
function has to be associated to each pixel of the image. This information can be
calibrated in a similar way as score absence is calibrated in Section 3.3.2. When a
pixel px,y is classified as skin by the skin detector, it is possible to obtain a MF, that
we denote by mPx,y

skin, representing the uncertainty with respect to the presence of a face
on pixel px,y. The necessary training set is obtained using L images on which the skin
detector is applied; the numbers of pixels which have been classified as skin can be
obtained and as the positions of the faces on these L images are available, their true
label Yi is available. Thus, using this training set, the MF representing the uncertainty
with respect to the presence of a face on pixel px,y when this pixel is classified as skin
can be calculated. Specifically, if we denote by TP (True Positive) the number of pixels
classified as skin and belonging to a face on these images and FP (False Positive) the
number of pixels classified as non-skin but actually belonging to a face, the MF can
be defined by

m
Px,y

skin({0}) = FP

TP + FP + 1 , m
Px,y

skin({1}) = TP

TP + FP + 1 . (3.10)

In addition, given a pixel classified as non-skin, the whole process can be
applied to define a MF representing the uncertainty with respect to the presence of a
face on pixel px,y.

The same experiment as in Section 3.5.2 was performed, including the four
face detectors, the two different datasets, and the decision strategy. The repartition
of the images for the calibration training and the tests was also the same. The fifth
source, i.e., the skin detector which gives information on pixels, was simply added
to the global system. Figure 3.9 compares the results of the pixel-based approach
proposed in Section 3.5.2 and the new system now relying on a combination of the
outputs of five detectors instead of four.

We may remark that the skin detection has a lower precision rate than the face
detectors. It can partly be explained by the fact that all the other parts of the human
body, such as hands or arms, may be correctly classified as skin but are counted as false
positives as the ground truth is face positions. Furthermore, the color detector is only
represented by one point in Figure 3.9 because all the pixels considered as skin have
the same MF, likewise for the pixels indicating non skin. Thus, as for the deep neural
network detector, increasing the cost c(0, 1) does not gradually increase the number
of blurred pixels. Actually, at some value of cost c(0, 1), which is not represented in
Figure 3.9, a second point for the color detector is obtained but it corresponds to a
useless point where all the pixels are blurred by the color detector.

As it can be noticed in Figure 3.9, the addition of the skin color information
improves the global combination although the performance of skin detection is not
that good.
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Figure 3.9 – Integration of skin color information to the proposed approach on FDDB.

Finally, we conducted the experiment on the SNCF dataset and the results
are shown in Figure 3.10. The conclusion are the same as the integration of skin
information also improves the overall performances.

Figure 3.10 – Integration of skin color information to the proposed approach on SNCF
dataset.

Figure 3.11 shows some examples of obtained results on SNCF dataset with-
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Figure 3.11 – Comparison of the results obtained by our fusion approach without (left)
and with (right) the integration of skin color detection.
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out (left column) and with (right column) the integration of the skin color detection.
The blurred pixels are in red for a better visibility. As it can be seen, adding the in-
formation of skin enables to “unblur” some incorrectly blurred pixels, but also to blur
some pixels that should be blurred. Yet, it may also unblur some pixels that actually
belong to a face.

These experiments concerned our disjoint pixel-based approach, which is an
alternative to the box-based approach. A common point between these two approaches
is that they calibrate independently each detector and rely on a predetermined rule of
combination. We now propose to apply our evidential joint calibration for combining
the scores. The results are presented in the next section.

3.5.4 Comparison between disjoint and joint approaches on
FDDB and SNCF databases

The joint calibration approach was presented in the second chapter of this
report and we have exposed how to apply it to the issue of face detection in Section
3.4 of this chapter. In this section, we present the obtained performance results and
compare them to those of our proposed disjoint approach.

The performed experiment was exactly the same as in previous sections. Fig-
ure 3.12 shows the comparison between our disjoint approach and the joint one on the
FDDB dataset.

Figure 3.12 – Comparison between disjoint and joint calibration on FDDB.

As it can be noticed, the approach based on the joint calibration has better
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global performance than the disjoint one. For instance, for a precision rate of 90%, the
disjoint approach gives a recall rate of around 68% while it is equal to 72% for the joint
approach. Finally, we conducted the same experiment on the SNCF dataset and the
results are shown in Figure 3.13. The conclusion are the same as the joint calibration
results are similar or better than the disjoint one.

Figure 3.13 – Comparison between disjoint and joint calibration on SNCF dataset.

3.6 Conclusion

In this chapter, a pixel-based face blurring system relying on evidential cal-
ibration and fusion of several detector outputs was proposed. This pixel-based ap-
proach brings several advantages over a previous box-based proposal. First, an overlap
threshold is no longer necessary, as well as a clustering step. Furthermore, it enables to
integrate pixel-based or box-based information, and in the considered blurring prob-
lem, it allows us to model and to integrate to the fusion process the information of
score absence for each detector, i.e., a MF is defined for pixels which are not contained
by any of the boxes returned by the detector. The proposed system also shown bet-
ter performances than the box-based approach, either on a literature dataset or on a
more challenging one. We also illustrated the ability of natively integrating a detector
giving pixel-based outputs by adding a skin color detector to the global system; this
latter addition further improved the overall performances. Furthermore, we applied the
joint calibration approach described in Chapter 2 to the problem of face blurring and
compared it to our proposed disjoint approach. The system based on joint calibration
shows better performances than the proposed disjoint approach on both datasets. A
perspective could be to add the skin detection in the joint approach.
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All the experiments presented on this chapter concerned tests on still images,
yet let us recall that the input of our system are videos. Thus, it seems interesting to
exploit temporal information in order to improve the blurring performance. This is the
topic of the next chapter.
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Face blurring on videos
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4.1 Introduction

A video contains more information than still images that are not related
to one another. In this case, it is interesting to take into account for each image
the information contained by the previous frames, more specifically in our case the
previous face positions. It can be performed using a tracking algorithm, that allows
one to improve the positions of the presumed faces in the considered image based on
the previous ones. The main difficulties to track moving objects include the occlusions,
a cluttered background, the interaction between the objects, etc. The state-of-the-art
in terms of object tracking is abundant [7, 14, 20, 119], and among all the existing
approaches, the most known solutions are the Kalman filter [60, 61, 11] and the particle
filter [3, 81, 35]. Both algorithms recursively predict an estimate of the state and
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updates it given a sequence of observations (measurements), but Kalman filter is easier
to apprehend and has much lower computational requirements than particle filters.
Within this scope, we propose to integrate a Kalman filter, and more especially multiple
Kalman filters, in our global system.

In this chapter, we first expose how a tracking algorithm can be integrated
to our blurring system in Section 4.2. Then, in Section 4.3, the general principle of
the well-known Kalman tracking algorithm is exposed. The results of the application
of this algorithm coupled with our detection system are then compared to a simple
detection system in Section 4.4, and the results are discussed.

4.2 Overview of the global system

The overview is first described for a given detector, then extended to the
application of J detectors. A common detection-tracking system is composed of four
main steps, which are the prediction, detection, association and correction steps, and
that we explain below. Figure 4.1 illustrates the relation between these different steps
for a system composed of one detector.

Figure 4.1 – Overview of the system for a given detector.

First, given an image at time t, the detection is performed, i.e., the jth de-
tector is ran on this image and outputs a set of bounding boxes and associated scores.
The tracking filter performs target tracking by predicting the future positions of the
previous tracked boxes in the frames. For instance, it can be performed using the
prediction equations given in Section 4.3.1 for the case of a Kalman filter.
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Then, a step called association is necessary as multiple objects are considered
in our application. Data association is a specific problem of tracking in a multi-object
situation, which consists in finding the true position of the moving targets in presence
of different valid candidates [8], i.e., matching the new detected boxes with the tracked
ones. The assignment problem is handled using the Hungarian algorithm, also called
algorithm of Kuhn-Munkres [67]. The data association assigns one target provided by
the detector to a track and manages the track creation, deletion and update. A track
goes through these three steps:

• A track is created if there is a detected box which is not assigned to any of
the currents tracks. The score associated to this detected box is assigned to this
newly tracked box.

• A new detected box is assigned to a track, in which case the detection is used as a
measurement for the correction step of the corresponding track. It corresponds to
the correction equations given in Section 4.3.2 for the particular case of Kalman
filter. Furthermore, the lifetime of the corresponding track is reset, and the score
assigned to the tracked box is replaced by the score associated to the new detected
box.

• The deletion of a track happens when its lifetime is over a threshold, i.e., when a
tracked box has not been detected for p frames, this box is no longer considered.
It solves the problem of tracks that have lost their target, for instance if the
person has left the filmed scene.

Let us now consider our global system, which is composed of J detectors.
Figure 4.2 illustrates the different steps of this global detection-tracking system com-
posed of J detectors. Specifically, it corresponds to J systems of Figure 4.1 and the
fusion step.

A tracking filter is defined for each detector, i.e., the boxes returned by a
given detector have their own steps of prediction, association and correction. Each
tracking filter returned a set of bounding boxes with corrected positions. They are
called “candidates” as the fusion step may decide that it does not correspond to a face
and thus does not blur the corresponding area. This fusion step corresponds to our
joint calibration approach defined in Chapter 2 and applied to the face blurring issue
in Chapter 3. Finally, the output of this global system is the input image with the
blurred faces.

More specifically, the steps of prediction and correction are performed using
a standard Kalman Filter, which general principle is described in next section.
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Figure 4.2 – Overview of the global system.

4.3 Kalman filter-based tracking

The Kalman filter is named after Rudolf Emil Kalman, who designed this
algorithm more than fifty years ago [60]. Yet, it is still one of the most important
and common used tracking algorithm up to this day. It has been successfully used in
different prediction applications, such as in satellite navigation device, smoothing the
output from laptop trackpads, tracking multiple objects, etc. For instance, the most
famous use of the Kalman filter was in the Apollo navigation computer that took N.
Armstrong to the moon.

This filter is a recursive estimator as only the estimated state from the pre-
vious time step and the current measurement are needed to compute the estimate for
the current state. The state of the filter is represented by two variables:

• x̂i|j represents the estimate of x at time i given observations up to and including
time j ≤ i, where x contains the terms of interest for the system, i.e., in our case
the position, size and velocity of a face.

• Pi|j represents the error covariance matrix at time i (a measure of the estimated
accuracy of the state estimate).

The Kalman filter algorithm works in a two-step process: prediction and cor-
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rection (also called the update step). The first step uses previous states to predict the
current state of the considered objects. The second step uses the current measurement,
in our case the outputs of the detection step (position and size), to correct the state.

4.3.1 Prediction step

In this step, the state of the system and its error covariance are transitioned
using a defined transition matrix F . The standard Kalman filter equations for the
prediction stage are defined by

x̂t+1|t = Ftx̂t|t +But, (4.1)

Pt+1|t = FtPt|tF
T
t +Qt, (4.2)

where Ft corresponds to the state-transition matrix, which applies the effect of each
system state parameter at time t− 1 on the system state at time t. The matrix Bt is
a control-input matrix for each time-step t, which is applied to the control vector ut
(not used in our system). Qt corresponds to the covariance matrix of a process noise.

4.3.2 Correction step

This second step is also called innovation step or update step. It consists in
correcting the states using the measurement and the predictions. The standard Kalman
filter equations for the update stage are defined by

x̂t+1|t+1 = x̂t+1|t +Kt+1(yt+1 −Ht+1x̂t+1|t), (4.3)

Pt+1|t+1 = Pt+1|t −Kt+1Ht+1Pt+1|t, (4.4)

with
Kt+1 = Pt+1|tH

T
t+1(Ht+1Pt+1|tH

T
t+1 +Rt+1)−1, (4.5)

and yt the measurement vector, Ht the measurement matrix that defines the mapping
from the state vector to the measurement vector and Rt the covariance matrix of the
measurement noise. The variable Kt is called the Kalman gain.

In order to use the Kalman filter, the matrices Ft, Ht, Qt and Rt need to be
specified according to a motion model. To do that, we used the model of a constant
velocity.
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4.4 Experimental results

In this section, the results of a frame-by-frame system are compared to the
system that integrates a tracking algorithm. These experiments are performed on dif-
ferent annotated SNCF videos, that contain various situations and environment. First,
Section 4.4.1 describes the experiment in further details. Then, the obtained results
are presented and discussed in Section 4.4.2.

4.4.1 Description

The inputs of the global system are SNCF videos, extracted from EAS system
as explained in the Introduction. They have been manually annotated and present
various situations: there are more or less persons, different image qualities, walking or
running persons, etc. They are between around 45-second long and 2 minutes 30-second
long. Their characteristics are given in Table 4.1.

Number of images Number of faces
Video 1 2002 386
Video 2 1345 635
Video 3 3631 1526
Video 4 1142 775

Table 4.1 – Particularities of the tested videos.

The four selected detectors returning bounding boxes and associated scores
are applied in each frame of the video. The first considered system consists simply
in applying the joint calibration approach, whose results on still images have been
presented in Section 3.5.4 of Chapter 3. The joint calibration approach directly uses
the outputs of the detectors. We call this system the detection system.

The second system integrates the Kalman-based tracking algorithm as ex-
plained in Section 4.2, i.e., for a given image the obtained positions of the boxes are
updated using the association and tracking algorithms, then the joint calibration ap-
proach is applied using these corrected positions as inputs. We refer to this system as
the detection-tracking system.

Concerning the performance measure, we use the decision procedure relying
on upper expected costs, as in the previous chapter. By gradually increasing c(0, 1),
we obtain different points for the recall and precision rate. The obtained results are
presented for both systems in the next section.
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4.4.2 Comparison of results between the detection and
detection-tracking systems

Figure 4.3 shows the results obtained for the two different systems on four
different videos, and Figure 4.4 shows example of image extracted from these videos.
Recognizable persons that are not SNCF employees are made anonymous for legal
reasons.

(a) Video 1. (b) Video 2.

(c) Video 3. (d) Video 4.

Figure 4.3 – Comparison of performance between the detection and tracking-detection
systems on four different videos.

As it can be noticed in Figure 4.3, adding a tracking algorithm enables to
improve the overall performance. Indeed, for a given precision rate, the obtained recall
rate is always higher for the tracking-detection system than for the detection system.
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(a) Video 1. (b) Video 2.

(c) Video 3. (d) Video 4.

Figure 4.4 – Example of image extracted from the four different videos.

We may also remark that the interpretation of the results depends on the
value of the cost c(0, 1). Let us take the example of Figure 4.3a; when the cost c(0, 1)
is equal to 1, it corresponds to a precision rate of around 90% for both systems while a
recall rate of around 49% for the detection system and 56% for the tracking-detection
system. Thus, the tracking algorithm enables to improve the recall rate while keeping
the same precision rate. Yet, when the cost c(0, 1) is higher, i.e, when more candidates
pixels are blurred, the recall rate is still improved but the precision rate decreases.
For instance, if we consider the last point for both systems in Figure 4.3a, we obtain
respectively 50% and 83% of recall and precision rates for the detection system and
38% and 90% for the tracking-detection system. Thus, in that case, the tracking enables
to reach a better recall rate but also decreases the precision. The difference between
the two considered cases may be explained by the fact that when c(0, 1) is low, only
the pixels with a high MF are blurred, and they are more likely to belong to a face.
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Thus, the tracking enables to blur some pixels that belong to faces that may be not
detected in every frame in the detection system. Yet, the higher the cost, the more
pixels are blurred, and those pixels may actually not belong to a face. The tracking
will thus continue to blur a false positive, and it leads finally to a lower precision rate
than in the detection system.

Furthermore, we tested the two systems on two small video extracts corre-
sponding to particular situations of 5 seconds each, i.e., 125 images each. In the first
one, which results are given in Figure 4.5a, a person is walking along the railway looking
in front of him, i.e., in the direction of the camera. In that case, the detection process
works well. The second case corresponds to three persons who look in the direction of
the camera, then turn a little, then look again at the camera, etc. In that case, the
detection misses some faces. The results of this second case are given in Figure 4.5b.

(a) Case 1. (b) Case 2.

Figure 4.5 – Comparison of performance between the detection and tracking-detection
systems for two different cases.

As it can be noticed, in both extracts the detection-tracking system gives
better performance than the detection-system, but the difference of results is more
striking in the second case (Figure 4.5b) than in the first case (Figure 4.5a).

4.5 Conclusion

In this chapter, we have introduced a tracking algorithm in order to take
advantage of the previous information, as the inputs of the considered system are
videos. It allows to obtain better estimated positions of the bounding boxes than
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a system only based on detection, and we showed that it enables to improve the
performance, especially in certain particular situations.

Let us note that we chose a classical algorithm of the literature that may be
replaced afterwards by a more efficient one; for instance, a tracking algorithm which
is able to work with non-linear systems, such that for instance a particle filter or the
extensions of the general Kalman filter that have been developed in that sense, such
that the Extended Kalman filter or the Unscented Kalman filter [57]. Furthermore, a
smoothing algorithm could be considered in order to obtain better position estimations,
as a smoothing algorithm also takes into account the next frames of the videos in
addition to the previous frames. The association step could also be improved with a
better approach [33].



Conclusion

Summary of contributions

This thesis aimed to study and develop an efficient fusion system composed
of different classifiers in order to blur people faces on SNCF videos. Two main contri-
butions were exposed in this thesis.

The first one is the evidential joint calibration approach proposed in order
to handle the scores returned by multiple classifiers. This approach belongs to the
category of trainable combiners as it takes a score vector as input and does not need
a predetermined rule of combination. Of particular interest is that we used evidence
theory to handle better the uncertainties associated with calibration techniques. Our
approach was compared to Xu et al.’s disjoint approach, which independently cali-
brates the scores of classifiers using the evidence theory and combines the obtained
mass functions using Dempster’s rule of combination. We compared also our proposed
method to an approach belonging to the trainable combiner category and based on
an evidential classifier. In both cases, the obtained results for our evidential joint cal-
ibration based on logistic regression either are better or are comparable to that of
the other approaches. Furthermore, by introducing the possibility to reject a test sam-
ple, we showed the advantages of the evidential multivariable logistic-based calibration
over the probabilistic version: it models more precisely the uncertainties and it exhibits
better performances. Yet, we may notice that it is more convenient to have a disjoint
approach if the considered application aims to add more and more classifiers, as the
joint calibration needs to entirely rebuilt in this case. Furthermore, the complexity is
higher in the joint case than in the disjoint one, but using existing techniques that aim
to decrease the computation time of the gradient ascent enables to obtain a reasonable
time of processing even in the joint case.

Our second main contribution consisted in studying the issue of face blur-
ring on an image. A well-founded box-based approach of detection was applied at a
pixel-level and it has been shown that this approach brings several advantages over the
box-based proposal as well as better performances. In the considered blurring problem,
it allows us to model and to integrate to the fusion process the information of score ab-
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sence for each detector. We also illustrated the ability of integrating a detector giving
pixel-based outputs by adding a skin color detector to the global system; this latter
addition further improved the overall performances. The experiments were performed
on a literature dataset as well as on a more challenging one. This latter dataset corre-
sponds to SNCF images, in which the final goal is to blur the faces. We also exposed
how to apply the joint calibration approach to this face blurring issue and compared
it with the disjoint proposed approach; it showed similar or better performance.

To sum up, following the works of Xu et al. on evidential calibration, we
proposed and studied approaches based on evidential joint calibrations that enable to
obtain a belief function for a given object without the need of a rule of combination.
We published this work in [77]. Furthermore, we developed an approach for face blur-
ring based on evidential calibration and applied at a pixel-level; it leads to several
advantages compared to a state-of-the-art box-based approach. This work has been
published in [76, 78]. The first contribution was also tested on that application.

Finally, as the input of the application are videos, a tracking algorithm has
been integrated to the system in order to account for the temporal information. Indeed,
one could use the fact that a pixel is more likely to be blurred if it has been blurred
on a previous image. We used a general basic algorithm as a first approach, and we
showed that it enables to improve overall performance, and in particular to increase
the recall rate, i.e., to miss less faces that have to be blurred.

In parallel of this work, we developed a human-machine interface that allows
the user to manually interact and that integrates different functionalities in order to
have the most efficient tool to blur faces on videos. For instance, the possibility of going
back on the videos has been made possible so that if the system missed a face, the user
can return to the previous frames and manually blur it. Furthermore, a permanent
blurring may be settled during all the video. It is useful if there is an area of the video
that we constantly want to be blurred. On the contrary, the permanent un-blurred
may be performed, i.e., an area of the image that will never be blurred.

Future works

The work presented in this thesis may be continued in many directions, and
may concern the application, i.e., the face blurring issue, but also the proposed joint
calibration approach. In the following paragraphs, we sketch a few of them. More
specifically, some prospects concerning the joint calibration are first exposed followed
by the ones concerning the application.

First, our evidential joint calibration may be applied with different inputs;
indeed, we tested it with scores returned by classifiers, but it could be applied directly
on the features of the examples given by UCI datasets, that is it may be used as an
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evidential classifier.

Furthermore, we only applied our approach to some binary classification prob-
lems. The extension of the proposed evidential joint calibration to the multi-class
problem may be tackled in future works, following the same reasoning of [115], which
addressed this extension in the single classifier case.

Finally, it seems interesting to develop an evidential joint calibration approach
relying on a generalization of logistic regression, known as choquistic regression [105],
in order to have a more flexible modeling of the interactions between the classifiers.

Concerning the application, the proposed pixel-based approach can be applied
with other detectors, which can be based on boxes or pixels. One perspective consists
in replacing one of the face detectors by a more efficient one or to add one to the
global system. Indeed, new face detectors are proposed every year, especially since the
breakthrough triggered by the deep neural networks, and the purpose of this work was
not to develop a new face detector but to investigate on how combining the outputs of
several classical detectors. Furthermore, the same remark could be made concerning
the tracking algorithm, which could be replaced for instance by a method accounting
also the next frames.

Another perspective is to make use of the spatio-temporal context of a given
pixel directly in the joint calibration. Indeed, as recalled, we used as input to our joint
calibration approach the scores provided by some binary classifiers and it gives us a
face blurring system in still images. Then, we added a tracking algorithm in order to
account for temporal information. A perspective could thus be to directly integrate
all the available information in a global joint calibration, i.e., the scores given by the
different classifiers but also the temporal information. Similarly, it is reasonable to
consider that a pixel is more likely to be blurred if its neighbours have been blurred,
and this information could also be taken into account, perhaps in the joint calibration.
It could be an inspiration to extend our approach and make it more general. Yet, it
would increase the number of parameters in the calibration and thus a complexity
issue may appear.
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Main approaches for face detection
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The field of computer vision and image processing has been subject to nu-
merous researches in recent years. Regarding the object detection category, and more
specifically face detection, the applications are multiple and can lead to systems with
countless opportunities, such as face recognition [124], facial expression recognition
[84], or face tracking [41, 64]. For instance, the famous social network Facebook uses
face detection and recognition algorithms for the purpose of automatic tagging peo-
ple on images. As detection is the cornerstone of these systems, it is thus essential to
have an efficient algorithm, presenting the best possible performance. Given an im-
age, the aim of face detection is to determine whether it contains any faces and, if
present, return the position(s) and size(s) of the detected face(s) in the image. This
output is often represented by a rectangular box or an ellipse bounding each face.
This detection problem is considered as a complex issue because faces are deformable
objects: appearance (shape, color) and orientation are some examples of variability.
Furthermore, they are directly affected by the sensor quality (camera), the environ-
ment (uncontrolled light source), or by partial occlusions (objects hiding part of the
face).

109



110

Before the 2000’s, the main algorithms aiming to detect a face were based on
features such as geometrical, color-based or texture-based methods. They were quite
simple but did not work well in case of complicated environment. In fact, they mainly
concerned face localization problem, which aim to determine the position of a single
face in an image; this is a simplified detection problem with the assumption that
an input image contains only one face. Face detection has made significant progress
since, especially as the significant breakthrough achieved with the system based on
boosting proposed by Viola and Jones [109, 110]. Furthermore, the development of
machine learning techniques, helped by the rapid growth in processing power and
storage capacity of the modern computers, significantly improved the detection rate.
Also, these techniques are based on image dataset as it will be explained in Section A.1
and the community created more and more growing databases. For instance, recently
a new database called WIDER FACE and composed of more than 30 000 images with
almost 400 000 face annotations was made available [74].

The state-of-the-art regarding the methods aiming to detect a face is abun-
dant, especially since the past two decades. Over the years different categorizations
of the approaches of face detection have been proposed in the literature, evolving
over time. In the early 2000’s, these techniques were usually divided into four cate-
gories [118]:

• Knowledge-based methods, which use pre-defined geometric rules based on hu-
man face knowledge.

• Feature invariant methods, which find structural features such as colour, contours
or texture.

• Template matching methods, which use pre-stored face templates.

• Appearance-based methods, which learn the appearance of the face using a
dataset.

Another type of categorization was also commonly used to group the different meth-
ods of face detection [72, 51]; it distinguished methods based on the local features
of the face and the so-called holistic methods. The first one regroups the geometri-
cal methods, based on face geometrical configuration, the texture-based methods and
most importantly the color-based methods. Skin detection is a very important element
and has been the subject of numerous researches [56, 106, 101, 58, 108]. The holistic
approaches take the face as a whole and are based on learning techniques (this latter
category refers thus to appearance-based methods of the first categorization).

Yet, in the light of recent technical and scientific developments, a third catego-
rization has appeared. Indeed, the modern face detectors are mostly appearance-based
methods, i.e., they need a dataset composed of face images to be trained. Thus, the
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above categorizations hardly applies on recent approaches. A recent survey on face
detectors can be found in [122], where the authors organized the algorithms in the
following two major categories:

• Methods based on rigid-templates, such as boosting and neural networks.

• Methods that learn and apply a Deformable Parts-based Model (DPM) [42] to
model a potential deformation between facial parts.

Furthermore, in [38] the authors regroup the approaches in three categories: cascade-
based, DPM-based and neural network-based.

Following these recent categorizations, and as DPM approach uses the clas-
sical HOG+SVM object detection algorithm [82], we propose to expose three classical
approaches to detect a face that are the Viola & Jones approach (based on boosting
and cascade), HOG+SVM, and neural network.

A.1 Overall description of modern face detectors

The modern face detectors, i.e., detectors developed in the past two decades,
mostly follow a similar process: a training step, a technique of sliding window and a
grouping of redundant detections.

First, a training step is performed aiming to teach the classifier to recognize a
face, using a dataset of images. This training is said supervised when each object of the
training set is labeled, i.e., the class of each object is known. More formally, for face
detection, the training set is defined by S = {(x1, y1), ...(xp, yp)} where xi corresponds
to the ith image of the dataset and yi its associated label, i.e., yi = 1 for a face image
and yi = −1 for a non-face image. All the images must have the size corresponding
to the size of the sliding window. The examples contained in the training set must be
as representative as possible of the considered application and in significant quantity.
Indeed, this principle is, in a certain sense, similar to the functioning of the human
brain: we end by recognizing particular objects thanks to the characteristic elements
that make up these, but not only; it is also essential to have seen several times during
his life. For each example of S, a vector of features is extracted and enables the classifier
to discriminate a face of a non-face. The goal of training is to find a function able to
make a decision about the class membership of the input examples based on the feature
vector, while having the lowest possible classification error. We give some example of
training algorithm model (AdaBoost, SVM) and features (Haar, LBP, HOG) in the
following sections. This training step is performed upstream of the test process as it
can take time, depending on the type of algorithm and the size of the training set S.

Then, for a given image test, a sliding window technique is used to scan each
area of the image. At each position of this window, a feature vector similar to those
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extracted during training is computed. By comparing it to what it has learned during
training, the classifier must make a decision and decide whether or not that portion of
the image represents a face. Furthermore, it often provides as well a confidence score
associated to this portion, which gives an idea on how much the classifier is confident
that the considered portion is a face.

Finally, a step is necessary to group multiple detections, i.e., detections that
belong to the same face. Indeed, firstly because the window moves a few pixels on
the image, the faces can be detected several times. In addition, this sliding window
process is applied to different scales of the image, and thus it may also cause multiple
detections. It is therefore essential to carry out a grouping of these multiple detections.
The technique generally used is to set a minimum number of neighbours for detection
to be maintained; the detections are considered neighbours if their overlap exceeds
a certain threshold, generally fixed at 50%. All the rectangles in a group are then
replaced by the average rectangle of that group. The larger the parameter, the lower
the number of false detections but the more faces are missed, and vice versa.

This general architecture, represented in Figure A.1, applies to most of mod-
ern approaches. In particular, it is the case for Viola & Jones and SVM approaches,
that we respectively describe in Section A.2 and A.3. Yet, as it will be explained in
Section A.4, neural networks are not based on specific features but learn the features
by themselves.

A.2 Viola & Jones

The first boosting procedure was initially proposed by Schapire [93]. Years
later, Freund [43] proposed a new boosting algorithm based on the ideas presented in
[93]. After these initial separate works on boosting algorithms, Freund and Schapire
proposed the adaptive boosting (AdaBoost) algorithm [45, 44]. This Adaboost algo-
rithm was in particular successfully applied to the issue of face detection by Paul Viola
& Michael Jones in the early 2000’s [109]. Indeed, their proposed algorithm triggered
a revolution in the field of face detection and became one of the most famous face
detector for many years and still remains widely used in the community. This work
contains three main ideas:

• The use of a so-called integral image to compute faster the features;

• The training of the classifier with a boosting-based approach;

• The cascade architecture to reduce computational time.

Section A.2.1 defines common features used with the Viola and Jones algo-
rithm, which are the Haar features and Local Binary Patterns (LBP). The integral
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Figure A.1 – Illustration of the general principle of modern face detectors.

image principle is also described in this section. The training model AdaBoost applied
for face detection is described in Section A.2.2, and the cascade architecture is given
in Section A.2.3.

A.2.1 Haar and Local Binary Pattern features

The Haar features are obtained by calculating the difference between the sum
of the pixels of adjacent rectangles. Examples of these adjacent regions are represented
in Figure A.2; the Haar features compute the intensity difference between the black
rectangular regions and the whites one. These area can be defined with various sizes
and orientations. Two examples are given in Figure A.2.

In order to compute faster these features, Viola and Jones proposed to use
integral image. The pixel at position (x, y) of the integral image is defined as the sum
of all the pixels at the top and left of this pixel, which means that the integral image
II of image I is constructed as follows:

II(x, y) =
∑

x′≤x,y′≤y
I(x′, y′), (A.1)
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Figure A.2 – Haar-like features.

where II(x, y) is the pixel value of the integral image at pixel location (x, y) and
I(x′, y′) the pixel value of the original image at pixel location (x′, y′). Thus, the sum
of pixels inside the rectangle region ABCD of Figure A.3 can be computed using
II(D) + II(A)− II(B)− II(C).

Figure A.3 – Illustration of an integral image.

Thus, to compute a feature composed of two (resp. three) rectangles for in-
stance, using the integral image allows to do that with only six (resp. eight) operations.

Another important feature used with Viola and Jones algorithm is the Local
Binary Patterns (LBP) [80]. Local Binary Patterns belong to the category of attributes
based on spatial modelling of textures. The purpose of the LBP operator is to assign to
each pixel of the image a value characterizing the local pattern of the neighbourhood
3 × 3 of the pixel. A threshold is carried out over the whole neighbourhood of the
considered pixel: if the value of the neighbouring pixel is less than that of the central
pixel, the result is 0, otherwise 1. A number in binary code can then be deduced and
is associated to the considered pixel. An example is given in Figure A.4. A 256-bin
histogram can be computed over an image and each bin corresponds to a feature.
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Figure A.4 – Example of LBP feature computation.

A.2.2 AdaBoost

Viola and Jones were the first to introduce a real-time face detection method
based on the boosting learning system called Adaboost (Adaptive Boosting) [45]. Its
general principle consists in constructing a strong classifier from a weighted combina-
tion of weak classifiers. A weak classifier simply corresponds to the computation of a
feature (such as Haar feature) on which a threshold is applied, and thus returns -1 or
1.

Initially, all weights are initialized equally. At each iteration t, the best weak
classifier is found, i.e., the classifier ht which minimizes the classification error εt. A
parameter λt measuring the importance that this weak classifier will have in the final
combination is calculated. The weights are then updated: more importance is given to
the samples which have been poorly classified by this weak classifier, i.e., their weight
is increased, and similarly the well classified ones will have a weaker weight. The final
(strong) classifier corresponds to the linear combination of the weak classifiers obtained
at each iteration, weighted by their coefficient.

The procedure of the Discrete Adaboost is described on the Algorithm 3.
Over the years, variants of this Adaboost algorithm have been proposed in order to
improve the performance, such as the Real Adaboost [92] or Gentle Adaboost [46]. It
has been shown that this latter variant outperforms the other variants in many cases.

A.2.3 Cascade structure

Viola and Jones introduced the notion of cascade in order to find a compro-
mise between computation time and performance [109]. This structure is motivated by
the fact that on average, only 0.01% of all windows of an image correspond to a face,
the rest being no interest background. Thus, the algorithm must spend most time only
on potentially positive windows.

Stages in the cascade are constructed by training classifiers using AdaBoost.
The principle of the cascade of classifiers is similar to the decision trees: on each stage,
either the strong classifier rejects the sample and the process stops, i.e., the window
is classified as non-face, or it is accepted and is transmitted to the next stage, and
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Algorithm 3 Adaboost algorithm
Require: training dataset {x1, y1}, ..., {xp, yp}, maximal number of iteration T , weak

classifiers h : x→ [−1, 1].
Weights initialization : w(i)

1 = 1
p
, i = 1, ..., p.

for t = 1 to T do
• Find the weak classifier having the smallest error classification:

εt =
p∑
i=1

yi 6=ht(xi)

w
(i)
t

.
• Compute the coefficient λt = 1

2 log(1−εt
εt

).
• Update the weights

w
(i)
t+1 = w

(i)
t

Zt
×
{
e−λt if ht(xi) = yi,
eλt if ht(xi) 6= yi,

= w
(i)
t

Zt
e(−λtyiht(xi)),

with Zt a normalization factor.
end for

Final strong classifier is defined by:
H(x) = sign(∑T

t=1 λtht(x)).
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so on. The first stage aims to eliminate many of the easiest cases, thus a majority of
windows without faces is quickly eliminated. The further down one goes on the cascade,
the more the number of features used is big, and therefore the more the classifier is
discriminating. This idea is schematized in Figure A.5. This idea of cascade has been

Figure A.5 – Illustration of the cascade architecture.

used in many other algorithms to reduce time processing such as with neural networks
[59] and with SVM [117, 127].

A complete algorithmic description of the Viola-Jones algorithm can be found
in [112]. This algorithm has provoked a lot of enthusiasm within the computer vision
community, and still remains today a famous and widely used method for detecting
a face in an image. Extensions and improvements have been proposed over the years,
such as for instance for the time processing of the algorithm [50] or its performance
[71].

A.3 HOG+SVM

Another widely applied method for object detection is the approach com-
bining the Support Vector Machine (SVM) as training classifier and Histogram of
Oriented Gradient (HOG) as feature. This HOG+SVM method was first introduced
by Dalal and Triggs in [22], in the field of human detection. In fact, this approach
becomes very popular to detect pedestrians [102, 48, 111, 83], but is also used for face
detection [82, 18, 117]. Furthermore, a recent and popular object detection method,
called Deformable Part Model (DPM) [42], uses this algorithm.

The principle of the feature called Histogram of Oriented Gradients is first
detailed in Section A.3.1, followed by the training algorithm called SVM in Section
A.3.2.

A.3.1 Histogram of Oriented Gradients

The descriptors called Histogram of Oriented Gradients (HOG) are often used
for object detection [102, 111, 127]. In particular, Dalal and Triggs showed that these
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features performed better than other features for pedestrian detection [22]. They are
also used to detect faces [18, 89].

The first step to compute this feature in a given image xi of the training set
S is to calculate the gradient values. To do this, a derivative mask is generally applied
in one or two directions (horizontal and vertical), i.e., the [−1, 0, 1] and [−1, 0, 1]T
median filters are applied to the image. Thus, for each pixel, the gradient direction
(phase) and gradient magnitude (norm) are obtained. If a RGB color image is used,
the filtering is performed on each of the three components and, for each pixel, the
gradient with the highest norm is kept.

Then, a grid of the image is defined. The second step consists in creating an
histogram for each cell of this grid: each pixel of a cell votes for a class of the histogram
according to the orientation of the gradient, and its vote corresponds to its magnitude.
For instance, Dalal and Triggs used cells composed of 8x8 pixels and 9-bin histograms
ranging from 0 to 180 degrees.

To account for changes in illumination and contrast, a step of gradient nor-
malization is performed. For this purpose, the authors group together several cells into
a same block, and normalization is performed on these blocks. As the blocks overlap,
a same cell participates several times in the final descriptor, as a member of different
blocks. This cell and blocks repartition is illustrated in Figure A.6.

Figure A.6 – Illustration of the grid to compute HOG [22].

Finally, a HOG descriptor, which consists of all the cell histograms for each
block in the image, is assigned to each image of the training set. This set of descriptors
is then used as input to train a SVM, detailed in the next section.
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A.3.2 Support Vector Machine

Support Vector Machines (SVM) were initially introduced by Vapnik et al.
[21, 95], and first applied to the problem of face detection by Osuna et al. [82]. The
purpose of SVM is the same as boosting methods and as any learning algorithms: to
train a classifier that offers the best possible classification performance.

The principle of SVM consists in finding a hyperplane that separates the
object class from the non-object class while maximizing the margin between these two
classes. Let us first consider the case where the training data are linearly separable;
in that case, there exists a hyperplane which separates the positive from the negative
examples. Figure A.7a illustrates examples of three hyperplanes for some given training
data. As it can be seen, the hyperplane A does not separate the two classes, contrary
to hyperplanes B and C. Finding the best hyperplane between B and C consists in
choosing the one that maximizes more the distances between him and the nearest data
point (either class). Thus, C is better than B.

(a) Different hyperplanes. (b) Optimal hyperplane.

Figure A.7 – Finding the optimal hyperplane.

Figure A.7b shows the illustration of the optimum hyperplane, which maxi-
mizes the margin between the two classes. In particular, H1 and H2 are the two parallel
hyperplanes that separate the two classes of data so that the distance between them
(called the margin) is as large as possible. The desired maximum-margin hyperplane is
the hyperplane that lies halfway between them. We may note that the points belong-
ing to these two hyperplanes, represented by the filled triangles and circles in Figure
A.7b, are called the Support Vectors. They are the elements of the training dataset
that would change the position of the hyperplane H if they were changed or removed.
These two particular hyperplanes can be described by

H1 : wxi − b = 1, H2 : wxi − b = −1, (A.2)

where w is a weight vector and b the bias. Using the distance between a point and a
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hyperplane, we obtain that the distance between these two hyperplanes is 2×1/||w|| =
2/||w||. The solution consists in finding the maximum margin by minimizing ‖w||,
subject to the constraint yi(xiw + b) ≥ 1 for i = 1, ..., p. This optimization problem
can be performed using Lagrangian method, which gives the optimal parameters ŵ
and b̂ of the optimal hyperplane. Then, given a test feature x, its class is given by the
sign of ŵx+ b̂.

Yet, we may notice that this linear SVM cannot solve classification problems
where the data are non-linearly separable. An extension to the non-lineraly case was
proposed by mapping data to higher dimensions (changing the feature representation)
[12].

A.4 Artificial Neural Networks

Artificial Neural Networks (ANN) refers to a family of machine learning al-
gorithms inspired by the way nervous system, such as the brain, processes the infor-
mation. It is composed of a large number of interconnected elements, corresponding
to the neurones of a brain. They were first proposed in 1943 by W. S. McCulloch, a
neuroscientist, and W. Pitts, a logician. They described the concept of a neuron: a
single cell, which takes part of a network of multiple cells, that receives and processes
inputs and generates an output. Applications of neural networks to vision problems
are not recent; in particular, they always have been a popular approach for face de-
tection [90, 88]. Yet, it was not until recently that they emerged as highly successful
on many applications in the form of deep neural networks, and in particular in the
classification field [96, 66, 98, 91, 103]. They are thus some current major approaches
for face detection [123, 38, 59, 55]. An historical survey compactly summarizes relevant
works on neural networks since the 1940s up until now in [94].

The main difference between neural network-based approaches and other ob-
ject detector algorithms is that the traditional approaches are based on extraction
of features such as Haar or HOG (features designed by human engineers), while the
neural networks do not make any assumptions about the features to extract. Neural
network models are capable of learning to focus on the right features by themselves.

Neural networks are typically organized in layers. There is first an input layer,
which communicates to one or more other layers called hidden layers, linked finally to
an output layer. An architecture of a typical feed-forward neural network composed of
two hidden layers is illustrated in Figure A.8. The term feed-forward indicates that,
except during training, the links extend in only one direction (from the input layer to
the output layer).

Each layer is composed of a number of nodes, which correspond to “brain
neurons”. A neuron is a computational unit that produces an output called activation
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Figure A.8 – Illustration of a neural network architecture.

based on a set of inputs and associated weights, and a bias term. It is performed using
a function called activation function. The final layer’s activations are the predictions
that the network actually makes. Multiple activation functions have been defined over
the years such as for instance the sigmoid function, that we exposed in Chapter 2, or
the hyperbolic tangent (tanh) function.

Training a neural network consists in finding the right set of weights for all
of the connections, to make the right decisions. The most classic way to train a neural
network is to use back-propagation algorithm [70]. First, the weights of the network are
randomly initialized. At each iteration, i.e., for each training data, the data is presented
to network and the unit outputs are calculated. For all layers, starting with the output
layer back to the input layer (hence the term back-propagation), the network output is
compared to the correct output through an error function and the weights are updated
according to the result.

Deep Neural Networks (DNN) is the name used for networks composed of
several (more than one) hidden layers. The processing power of the computers have
considerably increased these last years, and larger and larger datasets have been re-
cently made available. For instance, Facebook can use all the faces tagged on the photos
posted by the billion users it currently has. These factors enable to train deep neural
networks with more and more hidden layers, and the more hidden layers are, the more
complex the features the nodes can recognize. For instance, ConvNet architecture may
have 10 to 20 layers, with millions of connections between units [66] and more recently,
the authors of [49] proposed a network with a depth of up to 152 layers.

Despite their outstanding performance, deep neural networks present some
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disadvantages: they require a large amount of data, they are extremely computationally
expensive to train, and more importantly, the learning process is considered as a black
box, we do not know the features that are learned, as there is no proper defined
mathematical model.
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[80] T. Ojala, M. Pietikäinen, and D. Harwood. A comparative study of texture
measures with classification based on featured distributions. Pattern recognition,
29(1):51–59, 1996.

[81] K. Okuma, A. Taleghani, N. De Freitas, J. J. Little, and D. G. Lowe. A boosted
particle filter: Multitarget detection and tracking. In European conference on
computer vision, pages 28–39, Prague, Czech Republic, May 2004. Springer.

[82] E. Osuna, R. Freund, and F. Girosi. Training support vector machines: an
application to face detection. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), pages 130–
136, San Juan, Puerto Rico, June 1997.

[83] Y. Pang, Y. Yuan, X. Li, and J. Pan. Efficient HOG human detection. Signal
Processing, 91(4):773 – 781, 2011.

[84] M. Pantic and L. J. M. Rothkrantz. Automatic analysis of facial expressions: The
state of the art. IEEE Transactions on pattern analysis and machine intelligence,
22(12):1424–1445, 2000.

[85] J. C. Platt. Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. Advances in large margin classifiers, 10(3):61–
74, 1999.



130 REFERENCES

[86] B. Quost, M-H. Masson, and T. Denœux. Classifier fusion in the Dempster–
Shafer framework using optimized t-norm based combination rules. International
Journal of Approximate Reasoning, 52(3):353–374, 2011.

[87] E. Ramasso, C. Panagiotakis, D. Pellerin, and M. Rombaut. Human action
recognition in videos based on the Transferable Belief Model. Pattern analysis
and Applications, 11(1):1–19, 2008.

[88] F. Raphael, J. B. Olivier, and J-E. Viallet. A fast and accurate face detector
based on neural networks. IEEE Transactions on pattern analysis and machine
intelligence, 23(1):42–53, 2001.

[89] N. Rekha and M. Z. Kurian. Face detection in real time based on HOG. Inter-
national Journal of Advanced Research in Computer Engineering & Technology
(IJARCET), 3:1345–1352, 2014.

[90] H. A. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection.
IEEE Transactions on pattern analysis and machine intelligence, 20(1):23–38,
1998.

[91] T. N. Sainath, A-R. Mohamed, B. Kingsbury, and B. Ramabhadran. Deep convo-
lutional neural networks for lvcsr. In IEEE International Conference on Acous-
tics, Speech and Signal Processing, pages 8614–8618, 2013.

[92] R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-
rated predictions. Machine learning, 37(3):297–336, 1999.

[93] R.E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197–
227, 1990.

[94] J. Schmidhuber. Deep learning in neural networks: An overview. Neural net-
works, 61:85–117, 2015.

[95] B. Schölkopf, P. Simard, V. Vapnik, and A.J. Smola. Improving the accuracy
and speed of support vector machines. Advances in neural information processing
systems, 9:375–381, 1997.

[96] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Over-
feat: Integrated recognition, localization and detection using convolutional net-
works. Proceedings of the International Conference on Learning Representations,
2014.

[97] G. Shafer. A mathematical theory of evidence, volume 1. Princeton University
Press, 1976.

[98] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.



REFERENCES 131

[99] Ph. Smets. Belief functions: the disjunctive rule of combination and the general-
ized Bayesian theorem. International Journal of approximate reasoning, 9(1):1–
35, 1993.

[100] Ph. Smets and R. Kennes. The Transferable Belief Model. Artificial Intelligence,
66:191–243, 1994.

[101] M. Soriano, B. Martinkauppi, S. Huovinen, and M. Laaksonen. Using the skin
locus to cope with changing illumination conditions in color-based face tracking.
In Proceedings of the Nordic Signal Processing Symposium, volume 38, pages
383–386, Kolmarden, Sweden, June 2000.

[102] F. Suard, A. Rakotomamonjy, A. Bensrhair, and A. Broggi. Pedestrian detection
using infrared images and histograms of oriented gradients. In Intelligent Vehicles
Symposium, pages 206–212. IEEE, 2006.

[103] C. Szegedy, A. Toshev, and D. Erhan. Deep neural networks for object detection.
In Proceedings of the 27th Conference on Neural Information Processing Systems
(NIPS), pages 2553–2561, Lake Tahoe, Nevada, USA, Dec. 2013.

[104] Z. S. Tabatabaie, R. W. Rahmat, N. I. B. Udzir, and E. Kheirkhah. A hybrid
face detection system using combination of appearance-based and feature-based
methods. International Journal of Computer Science and Network Security,
9(5):181–185, 2009.

[105] A. Fallah Tehrani, W. Cheng, K. Dembczyński, and E. Hüllermeier. Learn-
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