Introduction to Dempster-Shafer Theory of Belief Functions

David Mercier & Eric Lefevre

Université d'Artois

Tutorial PFIA 2022 - Lundi 27 juin 2022

Dempster-Shafer (DS) theory of belief functions

▶ Dempster-Shafer (DS) theory of belief functions is a flexible mathematical framework for dealing with imperfect information.

Dempster-Shafer (DS) theory of belief functions

- ► Dempster-Shafer (DS) theory of belief functions is a flexible mathematical framework for dealing with imperfect information.
- ► Also known as Dempster-Shafer (DS) theory or Evidence theory or Belief Function Theory.

Dempster-Shafer (DS) theory of belief functions

- ► Dempster-Shafer (DS) theory of belief functions is a flexible mathematical framework for dealing with imperfect information.
- ► Also known as Dempster-Shafer (DS) theory or Evidence theory or Belief Function Theory.
- ▶ It was introduced by A. P. Dempster in the 1960's for statistical inference, and developed by G. Shafer in the late 1970's into a general theory for reasoning under uncertainty.

empster-Shafer (DS) theory of belief functions

- ► Dempster-Shafer (DS) theory of belief functions is a flexible mathematical framework for dealing with imperfect information.
- ► Also known as Dempster-Shafer (DS) theory or Evidence theory or Belief Function Theory.
- ▶ It was introduced by A. P. Dempster in the 1960's for statistical inference, and developed by G. Shafer in the late 1970's into a general theory for reasoning under uncertainty.
- ► DS encompasses probability theory and set-membership approaches as special cases.

Dempster-Shafer (DS) theory of belief functions

- ▶ Dempster-Shafer (DS) theory of belief functions is a flexible mathematical framework for dealing with imperfect information.
- ► Also known as Dempster-Shafer (DS) theory or Evidence theory or Belief Function Theory.
- ▶ It was introduced by A. P. Dempster in the 1960's for statistical inference, and developed by G. Shafer in the late 1970's into a general theory for reasoning under uncertainty.
- DS encompasses probability theory and set-membership approaches as special cases.
- ▶ It is very general: many applications in AI (expert systems, machine learning), engineering (information fusion, uncertainty quantification, risk analysis), statistical inferences, etc.
- ► Evidential reasoning can be applied to very large problems.

Different types of imperfect information

Uncertainty

Example: "I think John is 1.8m tall"

In this case, the piece of information John is 1.8m tall is precise but uncertain

Imprecision

Example: "John is between 1.7m and 1.9m tall" In this case, the piece of information "John is between 1.7m and 1.9m tall" is certain but imprecise

Different types of imperfect information

Uncertainty

Example: "I think John is 1.8m tall"
In this case, the piece of information John is 1.8m tall is precise but uncertain

Imprecision

Example: "John is between 1.7m and 1.9m tall" In this case, the piece of information "John is between 1.7m and 1.9m tall" is certain but imprecise

Imprecision and uncertainty

Example: "I think John is between 1.7m and 1.9m tall" In this case, the piece of information "John is between 1.7m and 1.9m tall" is both uncertain and imprecise

Different types of imperfect information

► Uncertainty ⇒ Classicaly tackled with probabilities

Example: "I think John is 1.8m tall"

In this case, the piece of information John is 1.8m tall is precise but uncertain

Imprecision

Example: "John is between 1.7m and 1.9m tall" In this case, the piece of information "John is between 1.7m and 1.9m tall" is certain but imprecise

Imprecision and uncertainty

Example: "I think John is between 1.7m and 1.9m tall" In this case, the piece of information "John is between 1.7m and 1.9m tall" is both uncertain and imprecise

Different types of imperfect information

► Uncertainty ⇒ Classicaly tackled with probabilities

Example: "I think John is 1.8m tall"

In this case, the piece of information John is 1.8m tall is precise but uncertain

► Imprecision ⇒ Classicaly tackled with sets

Example: "John is between 1.7m and 1.9m tall" In this case, the piece of information "John is between 1.7m and 1.9m tall" is certain but imprecise

Imprecision and uncertainty

Example: "I think John is between 1.7m and 1.9m tall" In this case, the piece of information "John is between 1.7m and 1.9m tall" is both uncertain and imprecise

Sources of uncertainty: Aleatory vs Epistemic

Aleatory uncertainty (Randomness)

٧S

Epistemic uncertainty (Lack of knowledge)

Difficulties to represent ignorance with probabilities "Le tiercé c'est mon dada" (O. Sharif)

▶ Consider a **horse race** with three horses h_1 , h_2 and h_3

Expert 1: "All three horses have an equal chance of winning (same level)"

Model:
$$p({h_1}) = p({h_2}) = p({h_3}) = \frac{1}{3}$$

Expert 2: "I have no idea (complete ignorance)"

Model:
$$p({h_1}) = p({h_2}) = p({h_3}) = \frac{1}{3}$$

Le Derby d'Epsom (Géricault)

Difficulties to represent ignorance with probabilities "Le tiercé c'est mon dada" (O. Sharif)

▶ Consider a **horse race** with three horses h_1 , h_2 and h_3

Expert 1: "All three horses have an equal chance of winning (same level)"

Model:
$$p({h_1}) = p({h_2}) = p({h_3}) = \frac{1}{3}$$

Expert 2: "I have no idea (complete ignorance)" Model: $p(\lbrace h_1 \rbrace) = p(\lbrace h_2 \rbrace) = p(\lbrace h_3 \rbrace) = \frac{1}{2}$

Le Derby d'Epsom (Géricault)

- ▶ Problem: Two distinct pieces of information are modeled identically.
- ▶ There is a need for a richer model.

Outline

Representation of information

Combining information

Decision making

Conclusion

Outline

Representation of information

Combining information

Decision making

Conclusion

Mass functions — Definition

- Let us consider a variable of interest X taking its values into a finite set of hypotheses $\Omega = \{\omega_1, ..., \omega_K\}$ called the universe or the frame of discernment.
 - Example: the horse that will win the race. $\Omega = \{h_1, h_2, h_3\}$
- ▶ A piece of information regarding the value ω_0 taken by this variable can be represented using a mass function (MF) m defined as a mapping $m: 2^{\Omega} \to [0,1]$ verifying

$$\sum_{A\subseteq\Omega} {\it m}^\Omega(A) = 1 \ .$$

- ▶ The real m(A) represents the part of belief allocated to the hypothesis that the searched true value ω_0 belongs to A and nothing more.
- ▶ A set A s.t. m(A) > 0 is called a focal set of m.

Mass functions — Example "Si vous avez perdu au tiercé, vengez-vous. Mangez du cheval." (P. Dac)

▶ Let us consider again the **horse race** example with $\Omega = \{h_1, h_2, h_3\}$

Expert 1: "All three horses have an equal chance of winning (same level)"

Model:
$$m({h_1}) = m({h_2}) = m({h_3}) = \frac{1}{3}$$

Expert 2: "I have no idea (complete ignorance)"

Model: $m({h_1, h_2, h_3}) = 1$

Le Derby d'Epsom (Géricault)

Mass functions — Special cases

- ▶ If the evidence tells us that the truth is in $A \subseteq \Omega$ for sure, then we have a logical or categorical mass function m_A s.t. $m_A(A) = 1$.
- $ightharpoonup m_{\Omega}$ represents the total ignorance, it is called the vacuous mass function
- ▶ If all focal sets of m are singletons, m is said to be Bayesian. It is equivalent to a probability distribution.
- A mass function can thus be seen as:
 - a generalized set
 - a generalized probability distribution

Other representations — Belief and Plausibility Functions

- ▶ A MF m is in one-to-one correspondence (each function represents the same information) with:
 - ▶ a belief function Bel defined for all $A \subseteq \Omega$ by:

$$Bel(A) = \sum_{\emptyset \neq B \subseteq A} m(B),$$

Bel(A) represents the total degree of belief supporting the fact that $\omega_0 \in A$ (Total support in A)

▶ a plausibility function PI defined for all $A \subseteq \Omega$ by:

$$PI(A) = \sum_{A \cap B \neq \emptyset} m(B) = Bel(\Omega) - Bel(\overline{A})$$

with $\overline{A} = \Omega \setminus A$.

PI(A) represents the total sum of beliefs that are not in contradiction

with A (Consistency with A)

Example

With $\Omega = \{a, b, c\}$, $m(\{a\}) = 0.3$, $m(\{b\}) = 0.4$ and $m(\Omega) = 0.3$

Let us compute $Bel({a,b})$ as an example, we have

$$Bel(\{a,b\}) = \sum_{B:\emptyset \neq B \subseteq \{a,b\}} m(B)$$
$$= m(\{a\}) + m(\{b\}) + m(\{a,b\}) = .7$$

For PI, let us compute $PI(\{a,b\})$ as an example as well

$$PI(\{a,b\}) = \sum_{B:B\cap\{a,b\}\neq\emptyset}$$
= $m(\{a\}) + m(\{b\}) + m(\{a,b\}) + m(\{a,c\}) + m(\{b,c\}) + m(\Omega)$
= 1

Example

With
$$\Omega = \{a, b, c\}$$
, $m(\{a\}) = 0.3$, $m(\{b\}) = 0.4$ and $m(\Omega) = 0.3$

bin.order		m	Bel	PI
000	Ø			
001	а	.3		
010	b	.4		
011	a, b			
100	С			
101	a, c			
110	b, c			
111	a, b, c	.3		

Example in R with the ibelief package

- > library(ibelief)
- > m = c(0,.3,.4,0,0,0,0,.3)
- > pl=mtopl(m)
- > bel=mtobel(m)

Example

Example: With $\Omega = \{a, b, c\}$, $m(\{a\}) = 0.3$, $m(\{b\}) = 0.4$ and $m(\Omega) = 0.3$

1. *			D.I	DI
bin.order		m	Bel	PΙ
000	Ø			
001	а	.3	.3	.6
010	b	.4	.4	.7
011	a, b		.7	1
100	С			.3
101	a, c		.3	.6
110	b, c		.4	.7
111	a, b, c	.3	1	1

Properties

- ▶ $Bel(\emptyset) = Pl(\emptyset) = 0$
- ▶ $Bel(\Omega) \le 1$ and $Pl(\Omega) \le 1$ (as $m(\emptyset)$ could be positive)
- ▶ $Bel(A) \leq Pl(A)$
- ▶ $PI(A) = 1 BeI(\overline{A})$
- ▶ If m is Bayesian (i.e. all focal elements are singletons) then Bel = Pl is a probability measure

Intervals [Bel(A), Pl(A)]

- ► The uncertainty about a proposition A is represented by two numbers: Bel(A) and Pl(A), with $Bel(A) \leq Pl(A)$.
- ► The intervals [Bel(A), Pl(A)] have maximum length when m is vacuous $(m = m_{\Omega})$.
 - ▶ In this case: Bel(A) = 0 for all $A \neq \Omega$ and Pl(A) = 1 for all $A \neq \emptyset$
- ▶ The intervals [Bel(A), Pl(A)] have minimum length when m is Bayesian.
 - ▶ In this case, for all A:

$$Bel(A) = Pl(A) = \sum_{\omega \in A} m(\omega)$$

and Bel and Pl are probability measures.

Consonant mass function

- ▶ If m has its focal elements nested $(A_1 \subset A_2 \subset ... \subset A_n)$, with A_i , $i \in \{1, 2, ..., n\}$ the focal elements of m), m is said to be consonant.
- ▶ In this case, for all $A \subseteq \Omega$, $B \subseteq \Omega$:

$$Bel(A \cap B) = min(Bel(A), Bel(B))$$

and

$$PI(A \cup B) = max(PI(A), PI(B))$$

meaning *PI* is a possibility measure and *BeI* is its dual necessity measure.

Outline

Representation of information

Combining information

Decision making

Conclusion

Cunjunctive Rule of Combination

▶ Two mass functions m_1 and m_2 from two reliable and distinct sources of information can be combined using the conjunctive rule of combination (CRC) defined by:

$$(m_1 \odot m_2)(A) = m_1 \odot_2(A) = \sum_{B \cap C = A} m_1(B) \cdot m_2(C), \quad \forall A \subseteq \Omega.$$

Cunjunctive Rule of Combination

Example

With $\Omega = \{a, b, c\}$, let us consider a MF m_1 and another independent MF m_2 s.t.

$$\begin{cases} m_1(\{b\}) &= .4 \\ m_1(\{a,b\}) &= .6 \end{cases} \text{ and } \begin{cases} m_2(\{b,c\}) &= .3 \\ m_2(\{a,b,c\}) &= .7 \end{cases}$$

CRC	$m_2(\{b,c\}) = .3$	$m_2({a,b,c}) = .7$
$m_1(\{b\}) = .4$	$\{b\} \cap \{b, c\} = \{b\}$.4 × .3 = .12	${b} \cap {a, b, c} = {b}$.4 × .7 = .28
$m_1(\{a,b\}) = .6$	${a,b} \odot {b,c} = {b}$ $.6 \times .3 = .18$	${a,b} \odot {a,b,c} = {a,b}$ $.6 \times .7 = .42$

The CRC $m=m_1 \odot m_2$ is given by

►
$$m({b}) = .4 \times .3 + .4 \times .7 + .6 \times .3 = .58$$

$$m({a,b}) = .6 \times .7 = .42$$

Dempster's rule

- ▶ If and only if m_1 and m_2 are two reliable and distinct mass functions (Axiomatic justifications, see e.g. Smets 2007)
- ▶ Dempster's rule := CRC normalized: $m_{1\oplus 2}(\emptyset) = 0$ and

$$(m_1 \oplus m_2)(A) = m_{1 \oplus 2}(A) = \frac{1}{1-\kappa} \sum_{B \cap C = A} m_1(B) \cdot m_2(C), \quad \forall A \neq \emptyset$$

with $\kappa = \sum_{B \cap C = \emptyset} m_1(B) \cdot m_2(C)$ (called degree of conflict).

Disjunctive Rule of Combination

▶ If the sources are distinct but only one of the sources is reliable (and we don't know which one), the disjunctive rule of combination (DRC) defined as follows can be applied:

$$(m_1 \odot m_2)(A) = m_1 \odot_2(A) = \sum_{B \cup C = A} m_1(B) \cdot m_2(C), \quad \forall A \subseteq \Omega.$$

Properties for these rules

- ▶ With these rules ⊙, ⊕ and ⊙, the order the sources are combined does not change the results
- ▶ $m_1 \bigcirc m_2 = m_2 \bigcirc m_1$ (Commutativity) (Likewise for \oplus and \bigcirc)
- $(m_1 \odot m_2) \odot m_3 = m_1 \odot (m_2 \odot m_3)$ (Associativity) (Likewise for \oplus and \odot)

Combining information

Example

	m_1	m_2	$m_1 \bigcirc m_2$	$m_1 \oplus m_2$	$m_1 \odot m_2$
Ø					
а	.3				
b	.4				
a, b		.5			
С					
a, c		.1			
b, c					
a, b, c	.3	.4			

Combining information

Example in R with the ibelief package

$$> m1 = c(0, .3, .4, 0, 0, 0, 0, .3)$$

$$> m2 = c(0,0,0,.5,0,.1,0,.4)$$

$$>$$
 mcunjunctive = DST(cbind(m1,m2),1)

$$> mdempster = DST(cbind(m1,m2),2)$$

Combining information

Example

	m_1	m_2	$m_1 \bigcirc m_2$	$m_1 \oplus m_2$	$m_1 \cup m_2$
Ø			.04		
а	.3		.30	.312	
b	.4		.36	.375	
a, b		.5	.15	.156	.35
С					
a, c		.1	.03	.031	.03
<i>b</i> , <i>c</i>					
a, b, c	.3	.4	.12	.125	.62

Misconception about Dempster's rule

- ► Following an old report from Zadeh (1979) it is still nowadays repeated that "Dempster's rule yields counterintuitive results" (usually used as a justification to introduce new combination rules)
- ▶ Zadeh's example: $\Omega = \{a, b, c\}$, two experts reporting:
 - ▶ Expert 1: $m_1(\{a\}) = 0.99$, $m_1(\{b\}) = 0.01$ and $m_1(\{c\}) = 0$
 - ▶ Expert 2: $m_2({a}) = 0$, $m_2({b}) = 0.01$ and $m_2({c}) = 0.99$
- ▶ Then $m_{1_{0}2}(b) = 1$, which is claimed to be "counterintuitive" by some authors because both experts considered b as very unlikely.
- ► But:
 - ► Both experts are totally reliable.
 - Expert 1 indicates that *c* is absolutely impossible.
 - ► Expert 2 indicates that *a* is absolutely impossible.
- ► Then *b* is the only possibility. We are in a situation, which is possible for both experts, where the true answer is *b*.
- ▶ Dempster's rule does produce sound results when used cordance with the axioms, from which it derived.

A simple correction example (Shafer, 1976).

Discounting of a mass function (MF) m is defined by (Shafer,1976):

$$\begin{cases} {}^{\alpha}m(A) = (1-\alpha)m(A), \quad \forall A \subset \Omega, \\ {}^{\alpha}m(\Omega) = (1-\alpha)m(\Omega) + \alpha, \end{cases}$$

where $\alpha \in [0,1]$ is the discount rate.

A simple correction example (Shafer, 1976).

Discounting of a mass function (MF) m is defined by (Shafer,1976):

$$\begin{cases} {}^{\alpha}m(A) = (1-\alpha)m(A), & \forall A \subset \Omega, \\ {}^{\alpha}m(\Omega) = (1-\alpha)m(\Omega) + \alpha, \end{cases}$$

where $\alpha \in [0, 1]$ is the discount rate.

Example:

- $m(\{a\}) = .2, m(\{b\}) = .4 \text{ and } m(\{a,b\}) = .4$
- ▶ With discount rate $\alpha = .2$:

$$\begin{cases} {}^{\alpha}m(\{a\}) & = .8 \times .2 & = .16 \\ {}^{\alpha}m(\{b\}) & = .8 \times .4 & = .32 \\ {}^{\alpha}m(\{a,b\}) & = .8 \times .4 & = .32 \\ {}^{\alpha}m(\Omega) & = .8 \times .0 + .2 & = .20 \end{cases}$$

$$> m = c(0,.2,.4,.4,0,0,0,0)$$

> mdisc = discounting(m,.8)

L'argument placé dans cette fonction est $1-\alpha=.8$ qui est le degré de fiabilité de la source (80% des masses sont gardées dans ce cas)

Results in terms of masses transfers

For each focal element B of m_S :

- ▶ A part $(1 \alpha) \cdot m_S(B)$ remains on B.
- ▶ A part $\alpha \cdot m_S(B)$ is transferred to Ω .

Matrix representation (Smets, 2002)

Discounting ${}^{\alpha}m$ is a generalization of m (${}^{\alpha}m$ \supseteq_s m):

$$^{\alpha}m(A) = \sum_{B\subseteq\Omega} {^{\alpha}G(A,B)m(B)}$$
,

with ${}^{\alpha}$ **G** a generalisation matrix defined by:

$${}^{lpha}G(A,B)=\left\{egin{array}{ll} 1-lpha & ext{if }A=B
eq\Omega,\ lpha & ext{if }A=\Omega ext{ and }B\subset A,\ 1 & ext{if }A=B=\Omega \ 0 & ext{otherwise}. \end{array}
ight.$$

$${}^{lpha}\mathbf{G} = \left(egin{array}{cccccc} 1 - lpha & 0 & \dots & 0 & 0 \ 0 & 1 - lpha & \dots & 0 & 0 \ 0 & 0 & \ddots & 0 & 0 \ 0 & 0 & \dots & 1 - lpha & 0 \ lpha & lpha & \dots & lpha & 1 \end{array}
ight)$$

Matrix representation: example

With
$$\alpha = .2$$
, $\beta = 1 - \alpha = .8$ and $\Omega = \{a, b, c\}$:

 α m

$${}^{\alpha}m = {}^{\alpha}G(A,B)$$

$$000 : \emptyset$$

$$001 : \{a\}$$

$$010 : \{b\}$$

$$011 : \{a,b\}$$

$$100 : \{c\}$$

$$101 : \{a,c\}$$

$$110 : \{b,c\}$$

$$111 : \{a,b,c\}$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0.0$$

$$0$$

m

Outline

Representation of information

Combining information

Decision making

Conclusion

Decision making

Making Hard Decisions

A way to make a **hard decision** is to choose a decision $d = \omega \in \Omega$ maximizing a probability transform of m, as for example using the Pignistic transform BetP defined by:

$$BetP(\{\omega\}) = \sum_{A \subseteq \Omega, \omega \in A} \frac{m(A)}{|A| (1 - m(\emptyset))}, \quad \forall \omega \in \Omega.$$

► Example: With $\Omega = \{a, b, c\}$, $m(\{a\}) = 0.3$, $m(\{b\}) = 0.4$ and $m(\Omega) = 0.3$

$$BetP = \begin{cases} \{a\} \mapsto 0.3 + \frac{0.3}{3} = 0.4\\ \{b\} \mapsto 0.4 + \frac{0.3}{3} = 0.5\\ \{c\} \mapsto 0.0 + \frac{0.3}{3} = 0.1 \end{cases}$$

Decision making

Making Hard Decisions: Example in R with the ibelief package

$$> m = c(0,.3,.4,0,0,0,0,.3)$$

$$>$$
 betp = mtobetp(m)

Decision making Making Partial Decisions

▶ A way to make a **partial decision** is to choose a set-valued decision $d = A \subseteq \Omega$ composed of elements of Ω , which are **not dominated** according to a preference relation:

1. The relation of **strong dominance or interval dominance** defined by

$$\omega \succeq_{\mathit{sd}} \omega' \iff \mathit{Bel}(\{\omega\}) \geq \mathit{Pl}(\{\omega'\})$$

2. The relation of **weak dominance** defined by

$$\omega \succeq_{wd} \omega' \iff Bel(\{\omega\}) \ge Bel(\{\omega'\}) \text{ and } Pl(\{\omega\}) \ge Pl(\{\omega'\})$$

Decision making

An example with partial decisions using the strong and weak dominance criteria

Example: With
$$\Omega = \{a, b, c\}$$
, $m(\{a\}) = 0.3$, $m(\{b\}) = 0.4$ and $m(\Omega) = 0.3$

$$Bel = \begin{cases} \{a\} \mapsto 0.3 \\ \{b\} \mapsto 0.4 \\ \{c\} \mapsto 0.0 \end{cases} \qquad Pl = \begin{cases} \{a\} \mapsto 0.6 \\ \{b\} \mapsto 0.7 \\ \{c\} \mapsto 0.3 \end{cases}$$

Relation SD	Non-dominated
$Bel(\{b\}) = .4 \ge Pl(\{a\}) = .6$ and $Bel(\{c\}) = 0 \ge Pl(\{a\}) = .6$	a
$Bel({a}) = .3 \ge Pl({b}) = .7$ and $Bel({c}) = 0 \ge Pl({b}) = .7$	b
$Bel(\{a\}) = .3 \ge Pl(\{c\}) = .3 \text{ (so } a \succeq_{sd} c)$	-

Conclusion using SD: $d = \{a, b\}$.

Relation WD	Dominated
$Bel(\{b\}) = 0.4 \ge Bel(\{a\}) = 0.3 \text{ and } Pl(\{b\}) = 0.7 \ge Pl(\{a\}) = 0.6 \text{ (so } b \succeq_{wd} a)$	a
$Bel(\{b\}) = 0.4 \ge Bel(\{c\}) = 0.0 \text{ and } Pl(\{b\}) = 0.7 \ge Pl(\{c\}) = 0.3 \text{ (so } b \succeq_{wd} c)$	С

Conclusion using WD: $d = \{b\}$.

Outline

Representation of information

Combining information

Decision making

Conclusion

Conclusion

- ▶ Dempster-Shafer (DS) theory of belief functions is a flexible mathematical framework for dealing with imperfect information.
- ▶ It encompasses probability theory and set-membership approaches as special cases.
- ▶ Belief functions can be seen as weighted opinions.

References to start learning Belief functions

- [1] https://bfasociety.org/#schools
- [2] T. Denoeux' talks: https://www.hds.utc.fr/~tdenoeux/dokuwiki/en/talks
- [2] T. Denoeux' teaching: https://www.hds.utc.fr/~tdenoeux/dokuwiki/en/teaching
- [3] G. Shafer. A mathematical theory of evidence. Princeton, N.J.: Princeton University Press, 1976
- [4] P. Smets. "The application of the matrix calculus to belief functions". In: *International Journal of Approximate Reasoning* 31.1–2 (2002), pp. 1–30
- [5] P. Smets. "Analyzing the Combination of Conflicting Belief Functions". In: *Information Fusion* 8.4 (2007), pp. 387–412
- [6] T. Denœux. "Decision-Making with Belief Functions: a Review". In: International Journal of Approximate Reasoning 109 (2019), pp. 87–110

Thank you for your attention.

