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Introduction
Dempster-Shafer (DS) theory of belief functions

I Dempster-Shafer (DS) theory of belief functions is a flexible mathe-
matical framework for dealing with imperfect information.

I Also known as Dempster-Shafer (DS) theory or Evidence theory or
Belief Function Theory.

I It was introduced by A. P. Dempster in the 1960’s for statistical in-
ference, and developed by G. Shafer in the late 1970’s into a general
theory for reasoning under uncertainty.

I DS encompasses probability theory and set-membership approaches as
special cases.

I It is very general: many applications in AI (expert systems, machine
learning), engineering (information fusion, uncertainty quantification,
risk analysis), statistical inferences, etc.

I Evidential reasoning can be applied to very large problems.

2/42

http://www.univ-artois.fr/


Introduction
Dempster-Shafer (DS) theory of belief functions

I Dempster-Shafer (DS) theory of belief functions is a flexible mathe-
matical framework for dealing with imperfect information.

I Also known as Dempster-Shafer (DS) theory or Evidence theory or
Belief Function Theory.

I It was introduced by A. P. Dempster in the 1960’s for statistical in-
ference, and developed by G. Shafer in the late 1970’s into a general
theory for reasoning under uncertainty.

I DS encompasses probability theory and set-membership approaches as
special cases.

I It is very general: many applications in AI (expert systems, machine
learning), engineering (information fusion, uncertainty quantification,
risk analysis), statistical inferences, etc.

I Evidential reasoning can be applied to very large problems.

2/42

http://www.univ-artois.fr/


Introduction
Dempster-Shafer (DS) theory of belief functions

I Dempster-Shafer (DS) theory of belief functions is a flexible mathe-
matical framework for dealing with imperfect information.

I Also known as Dempster-Shafer (DS) theory or Evidence theory or
Belief Function Theory.

I It was introduced by A. P. Dempster in the 1960’s for statistical in-
ference, and developed by G. Shafer in the late 1970’s into a general
theory for reasoning under uncertainty.

I DS encompasses probability theory and set-membership approaches as
special cases.

I It is very general: many applications in AI (expert systems, machine
learning), engineering (information fusion, uncertainty quantification,
risk analysis), statistical inferences, etc.

I Evidential reasoning can be applied to very large problems.

2/42

http://www.univ-artois.fr/


Introduction
Dempster-Shafer (DS) theory of belief functions

I Dempster-Shafer (DS) theory of belief functions is a flexible mathe-
matical framework for dealing with imperfect information.

I Also known as Dempster-Shafer (DS) theory or Evidence theory or
Belief Function Theory.

I It was introduced by A. P. Dempster in the 1960’s for statistical in-
ference, and developed by G. Shafer in the late 1970’s into a general
theory for reasoning under uncertainty.

I DS encompasses probability theory and set-membership approaches as
special cases.

I It is very general: many applications in AI (expert systems, machine
learning), engineering (information fusion, uncertainty quantification,
risk analysis), statistical inferences, etc.

I Evidential reasoning can be applied to very large problems.

2/42

http://www.univ-artois.fr/


Introduction
Dempster-Shafer (DS) theory of belief functions

I Dempster-Shafer (DS) theory of belief functions is a flexible mathe-
matical framework for dealing with imperfect information.

I Also known as Dempster-Shafer (DS) theory or Evidence theory or
Belief Function Theory.

I It was introduced by A. P. Dempster in the 1960’s for statistical in-
ference, and developed by G. Shafer in the late 1970’s into a general
theory for reasoning under uncertainty.

I DS encompasses probability theory and set-membership approaches as
special cases.

I It is very general: many applications in AI (expert systems, machine
learning), engineering (information fusion, uncertainty quantification,
risk analysis), statistical inferences, etc.

I Evidential reasoning can be applied to very large problems.

2/42

http://www.univ-artois.fr/


Introduction
Different types of imperfect information

I Uncertainty

⇒ Classicaly tackled with probabilities

Example: “I think John is 1.8m tall”
In this case, the piece of information John is 1.8m tall is precise but
uncertain

I Imprecision

⇒ Classicaly tackled with sets

Example: “John is between 1.7m and 1.9m tall”
In this case, the piece of information“John is between 1.7m and 1.9m
tall” is certain but imprecise

I Imprecision and uncertainty
Example: “I think John is between 1.7m and 1.9m tall”
In this case, the piece of information“John is between 1.7m and 1.9m
tall” is both uncertain and imprecise
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Introduction
Sources of uncertainty : Aleatory vs Epistemic

Aleatory uncertainty (Randomness)

vs

Epistemic uncertainty (Lack of knowledge)
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Introduction
Difficulties to represent ignorance with probabilities
“Le tiercé c’est mon dada” (O. Sharif)

I Consider a horse race with three horses h1, h2 and h3

Expert 1: “All three horses have an equal chance
of winning (same level)”

Model: p({h1}) = p({h2}) = p({h3}) = 1
3

Expert 2: “I have no idea (complete ignorance)”

Model: p({h1}) = p({h2}) = p({h3}) = 1
3

I Problem: Two distinct pieces of information are modeled identically.

I There is a need for a richer model.
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Representation of information
Mass functions — Definition

I Let us consider a variable of interest X taking its values into a finite
set of hypotheses Ω = {ω1, ..., ωK} called the universe or the frame of
discernment.

I Example: the horse that will win the race. Ω = {h1, h2, h3}
I A piece of information regarding the value ω0 taken by this variable can

be represented using a mass function (MF) m defined as a mapping
m : 2Ω → [0, 1] verifying ∑

A⊆Ω

mΩ(A) = 1 .

I The real m(A) represents the part of belief allocated to the hypothesis
that the searched true value ω0 belongs to A and nothing more.

I A set A s.t. m(A) > 0 is called a focal set of m.
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Representation of information
Mass functions — Example
“Si vous avez perdu au tiercé, vengez-vous. Mangez du cheval.” (P. Dac)

I Let us consider again the horse race example with Ω = {h1, h2, h3}

Expert 1: “All three horses have an equal chance
of winning (same level)”

Model: m({h1}) = m({h2}) = m({h3}) = 1
3

Expert 2: “I have no idea (complete ignorance)”

Model: m({h1, h2, h3}) = 1
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Representation of information
Mass functions — Special cases

I If the evidence tells us that the truth is in A ⊆ Ω for sure,
then we have a logical or categorical mass function mA s.t.
mA(A) = 1.

I mΩ represents the total ignorance, it is called the vacuous mass
function

I If all focal sets of m are singletons, m is said to be Bayesian.
It is equivalent to a probability distribution.

I A mass function can thus be seen as:
I a generalized set
I a generalized probability distribution
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Representation of information
Other representations — Belief and Plausibility Functions

I A MF m is in one-to-one correspondence (each function represents the same
information) with :

I a belief function Bel defined for all A ⊆ Ω by:

Bel(A) =
∑
∅6=B⊆A

m(B),

Bel(A) represents the total degree of belief supporting the fact that
ω0 ∈ A (Total support in A)

I a plausibility function Pl defined for all A ⊆ Ω by:

Pl(A) =
∑

A∩B 6=∅

m(B) = Bel(Ω)− Bel(A)

with A = Ω \ A.
Pl(A) represents the total sum of beliefs that are not in contradiction
with A (Consistency with A)
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Representation of information
Example

With Ω = {a, b, c}, m({a}) = 0.3, m({b}) = 0.4 and m(Ω) = 0.3

Let us compute Bel({a, b}) as an example, we have

Bel({a, b}) =
∑

B:∅6=B⊆{a,b}

m(B)

= m({a}) + m({b}) + m({a, b}) = .7

For Pl , let us compute Pl({a, b}) as an example as well

Pl({a, b}) =
∑

B:B∩{a,b}6=∅

= m({a}) + m({b}) + m({a, b}) + m({a, c}) + m({b, c}) + m(Ω)

= 1
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Representation of information
Example

With Ω = {a, b, c}, m({a}) = 0.3, m({b}) = 0.4 and m(Ω) = 0.3

bin.order m Bel Pl

000 ∅
001 a .3
010 b .4
011 a, b
100 c
101 a, c
110 b, c
111 a, b, c .3
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Representation of information
Example in R with the ibelief package

> library(ibelief)

> m=c(0,.3,.4,0,0,0,0,.3)

> pl=mtopl(m)

> bel=mtobel(m)
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Representation of information
Example

Example: With Ω = {a, b, c}, m({a}) = 0.3, m({b}) = 0.4 and m(Ω) =
0.3

bin.order m Bel Pl

000 ∅
001 a .3 .3 .6
010 b .4 .4 .7
011 a, b .7 1
100 c .3
101 a, c .3 .6
110 b, c .4 .7
111 a, b, c .3 1 1
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Representation of information
Properties

I Bel(∅) = Pl(∅) = 0

I Bel(Ω) ≤ 1 and Pl(Ω) ≤ 1 (as m(∅) could be positive)

I Bel(A) ≤ Pl(A)

I Pl(A) = 1− Bel(A)

I If m is Bayesian (i.e. all focal elements are singletons) then Bel = Pl
is a probability measure
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Representation of information
Intervals [Bel(A),Pl(A)]

I The uncertainty about a proposition A is represented by two numbers:
Bel(A) and Pl(A), with Bel(A) ≤ Pl(A).

I The intervals [Bel(A),Pl(A)] have maximum length when m is vacuous
(m = mΩ).

I In this case: Bel(A) = 0 for all A 6= Ω and Pl(A) = 1 for all A 6= ∅
I The intervals [Bel(A),Pl(A)] have minimum length when m is

Bayesian.

I In this case, for all A:

Bel(A) = Pl(A) =
∑
ω∈A

m(ω)

and Bel and Pl are probability measures.
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Representation of information
Consonant mass function

I If m has its focal elements nested (A1 ⊂ A2 ⊂ . . . ⊂ An, with Ai ,
i ∈ {1, 2, . . . , n} the focal elements of m), m is said to be consonant.

I In this case, for all A ⊆ Ω, B ⊆ Ω:

Bel(A ∩ B) = min(Bel(A),Bel(B))

and
Pl(A ∪ B) = max(Pl(A),Pl(B))

meaning Pl is a possibility measure and Bel is its dual necessity mea-
sure.
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Cunjunctive Rule of Combination

I Two mass functions m1 and m2 from two reliable and distinct
sources of information can be combined using the conjunctive
rule of combination (CRC) defined by:

(m1 ∩©m2)(A) = m1 ∩©2(A) =
∑

B∩C=A

m1(B)·m2(C ), ∀A ⊆ Ω .
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Cunjunctive Rule of Combination
Example

With Ω = {a, b, c}, let us consider a MF m1 and another independent MF
m2 s.t. {

m1({b}) = .4
m1({a, b}) = .6

and

{
m2({b, c}) = .3
m2({a, b, c}) = .7

CRC m2({b, c}) = .3 m2({a, b, c}) = .7

m1({b}) = .4
{b} ∩ {b, c} = {b} {b} ∩ {a, b, c} = {b}

.4× .3 = .12 .4× .7 = .28

m1({a, b}) = .6
{a, b} ∩©{b, c} = {b} {a, b} ∩©{a, b, c} = {a, b}

.6× .3 = .18 .6× .7 = .42

The CRC m = m1 ∩©m2 is given by

I m({b}) = .4× .3 + .4× .7 + .6× .3 = .58

I m({a, b}) = .6× .7 = .42
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Dempster’s rule

I If and only if m1 and m2 are two reliable and distinct mass
functions (Axiomatic justifications, see e.g. Smets 2007)

I Dempster’s rule := CRC normalized: m1⊕2(∅) = 0 and

(m1⊕m2)(A) = m1⊕2(A) =
1

1− κ
∑

B∩C=A

m1(B)·m2(C ), ∀A 6= ∅

with κ =
∑

B∩C=∅m1(B) ·m2(C ) (called degree of conflict).
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Disjunctive Rule of Combination

I If the sources are distinct but only one of the sources is reli-
able (and we don’t know which one), the disjunctive rule of
combination (DRC) defined as follows can be applied:

(m1 ∪©m2)(A) = m1 ∪©2(A) =
∑

B∪C=A

m1(B)·m2(C ), ∀A ⊆ Ω .
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Properties for these rules

I With these rules ∩©, ⊕ and ∪©, the order the sources are com-
bined does not change the results

I m1 ∩©m2 = m2 ∩©m1 (Commutativity) (Likewise for ⊕ and ∪©)

I (m1 ∩©m2) ∩©m3 = m1 ∩©(m2 ∩©m3) (Associativity) (Likewise for
⊕ and ∪©)
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Combining information
Example

m1 m2 m1 ∩©m2 m1 ⊕m2 m1 ∪©m2

∅
a .3
b .4
a, b .5
c
a, c .1
b, c
a, b, c .3 .4
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Combining information
Example in R with the ibelief package

> m1=c(0,.3,.4,0,0,0,0,.3)

> m2=c(0,0,0,.5,0,.1,0,.4)

> mcunjunctive = DST(cbind(m1,m2),1)

> mdempster = DST(cbind(m1,m2),2)

> mdisjunctive = DST(cbind(m1,m2),4)
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Combining information
Example

m1 m2 m1 ∩©m2 m1 ⊕m2 m1 ∪©m2

∅ .04
a .3 .30 .312
b .4 .36 .375
a, b .5 .15 .156 .35
c
a, c .1 .03 .031 .03
b, c
a, b, c .3 .4 .12 .125 .62
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Misconception about Dempster’s rule

I Following an old report from Zadeh (1979) - it is still nowadays
repeated that “Dempster’s rule yields counterintuitive results”
(usually used as a justification to introduce new combination
rules)

I Zadeh’s example: Ω = {a, b, c}, two experts reporting:
I Expert 1: m1({a}) = 0.99, m1({b}) = 0.01 and m1({c}) = 0
I Expert 2: m2({a}) = 0, m2({b}) = 0.01 and m2({c}) = 0.99

I Then m1 ∪©2(b) = 1, which is claimed to be “counterintuitive”
by some authors because both experts considered b as very
unlikely.

I But:
I Both experts are totally reliable.
I Expert 1 indicates that c is absolutely impossible.
I Expert 2 indicates that a is absolutely impossible.

I Then b is the only possibility. We are in a situation, which is
possible for both experts, where the true answer is b.

I Dempster’s rule does produce sound results when used in ac-
cordance with the axioms, from which it derived.28/42
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Discounting
A simple correction example (Shafer, 1976).

Discounting of a mass function (MF) m is defined by
(Shafer,1976):{

αm(A) = (1− α)m(A), ∀A ⊂ Ω,
αm(Ω) = (1− α)m(Ω) + α ,

where α ∈ [0, 1] is the discount rate.

Example:
I Ω = {a, b, c}
I m({a}) = .2, m({b}) = .4 and m({a, b}) = .4
I With discount rate α = .2:

αm({a}) = .8× .2 = .16
αm({b}) = .8× .4 = .32
αm({a, b}) = .8× .4 = .32
αm(Ω) = .8× .0 + .2 = .20
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Discounting
Example in R with the ibelief package

> m=c(0,.2,.4,.4,0,0,0,0)

> mdisc = discounting(m,.8)

L’argument placé dans cette fonction est 1− α = .8
qui est le degré de fiabilité de la source (80% des
masses sont gardées dans ce cas)
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Discounting
Results in terms of masses transfers

For each focal element B of mS :

B
Ω

(1− α) ·mS(B)

α ·mS(B)

I A part (1− α) ·mS(B) remains on B.
I A part α ·mS(B) is transferred to Ω.
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Discounting
Matrix representation (Smets, 2002)

Discounting αm is a generalization of m (αm ws m):

αm(A) =
∑
B⊆Ω

αG (A,B)m(B) ,

with αG a generalisation matrix defined by:

αG (A,B) =


1− α if A = B 6= Ω,
α if A = Ω and B ⊂ A,
1 if A = B = Ω
0 otherwise.

αG =


1− α 0 . . . 0 0

0 1− α . . . 0 0

0 0
. . . 0 0

0 0 . . . 1− α 0
α α . . . α 1
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Discounting
Matrix representation: example

With α = .2, β = 1− α = .8 and Ω = {a, b, c}:

αm = αG (A,B) · m

000 : ∅
001 : {a}
010 : {b}
011 : {a, b}
100 : {c}
101 : {a, c}
110 : {b, c}
111 : {a, b, c}



.0
.16
.32
.32
.0
.0
.0
.20


=



β
β

β
β

β
β

β
α α α α α α α 1


·



.0

.2

.4

.4

.0

.0

.0

.0
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Decision making
Making Hard Decisions

I A way to make a hard decision is to choose a decision d = ω ∈ Ω
maximizing a probability transform of m, as for example using the
Pignistic transform BetP defined by:

BetP({ω}) =
∑

A⊆Ω,ω∈A

m(A)

|A| (1−m(∅))
, ∀ω ∈ Ω .

I Example: With Ω = {a, b, c}, m({a}) = 0.3, m({b}) = 0.4 and
m(Ω) = 0.3

BetP =


{a} 7→ 0.3 + 0.3

3 = 0.4
{b} 7→ 0.4 + 0.3

3 = 0.5
{c} 7→ 0.0 + 0.3

3 = 0.1
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Decision making
Making Hard Decisions: Example in R with the ibelief package

> m=c(0,.3,.4,0,0,0,0,.3)

> betp = mtobetp(m)
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Decision making
Making Partial Decisions

I A way to make a partial decision is to choose a set-valued decision
d = A ⊆ Ω composed of elements of Ω, which are not dominated
according to a preference relation:

1. The relation of strong dominance or interval dominance defined by

ω �sd ω
′ ⇐⇒ Bel({ω}) ≥ Pl({ω′})

2. The relation of weak dominance defined by

ω �wd ω
′ ⇐⇒ Bel({ω}) ≥ Bel({ω′}) and Pl({ω}) ≥ Pl({ω′})
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Decision making
An example with partial decisions using the strong and weak dominance criteria

Example: With Ω = {a, b, c}, m({a}) = 0.3, m({b}) = 0.4 and m(Ω) = 0.3

Bel =

{a} 7→ 0.3
{b} 7→ 0.4
{c} 7→ 0.0

Pl =

{a} 7→ 0.6
{b} 7→ 0.7
{c} 7→ 0.3

Relation SD Non-dominated
Bel({b}) = .4 6≥ Pl({a}) = .6 and Bel({c}) = 0 6≥ Pl({a}) = .6 a
Bel({a}) = .3 6≥ Pl({b}) = .7 and Bel({c}) = 0 6≥ Pl({b}) = .7 b
Bel({a}) = .3 ≥ Pl({c}) = .3 (so a �sd c) -

Conclusion using SD: d = {a, b}.

Relation WD Dominated
Bel({b}) = 0.4 ≥ Bel({a}) = 0.3 and Pl({b}) = 0.7 ≥ Pl({a}) = 0.6 (so b �wd a) a
Bel({b}) = 0.4 ≥ Bel({c}) = 0.0 and Pl({b}) = 0.7 ≥ Pl({c}) = 0.3 (so b �wd c) c

Conclusion using WD: d = {b}.
38/42
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Conclusion

I Dempster-Shafer (DS) theory of belief functions is a flexible mathe-
matical framework for dealing with imperfect information.

I It encompasses probability theory and set-membership approaches as
special cases.

I Belief functions can be seen as weighted opinions.
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References to start learning Belief functions

[1] https://bfasociety.org/#schools

[2] T. Denoeux’ talks:
https://www.hds.utc.fr/~tdenoeux/dokuwiki/en/talks

[2] T. Denoeux’ teaching:
https://www.hds.utc.fr/~tdenoeux/dokuwiki/en/teaching

[3] G. Shafer. A mathematical theory of evidence. Princeton, N.J.:
Princeton University Press, 1976

[4] P. Smets. “The application of the matrix calculus to belief
functions”. In: International Journal of Approximate Reasoning
31.1–2 (2002), pp. 1–30

[5] P. Smets. “Analyzing the Combination of Conflicting Belief
Functions”. In: Information Fusion 8.4 (2007), pp. 387–412

[6] T. Denœux. “Decision-Making with Belief Functions: a Review”.
In: International Journal of Approximate Reasoning 109 (2019),
pp. 87–110

41/42

https://bfasociety.org/#schools
https://www.hds.utc.fr/~tdenoeux/dokuwiki/en/talks
https://www.hds.utc.fr/~tdenoeux/dokuwiki/en/teaching
http://www.univ-artois.fr/


Thank you for your attention.
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