Introduction to Dempster-Shafer Theory of Belief

Functions

David Mercier \& Eric Lefevre

Université d'Artois

Tutorial PFIA 2022 - Lundi 27 juin 2022

Introduction

Dempster-Shafer (DS) theory of belief functions

- Dempster-Shafer (DS) theory of belief functions is a flexible mathematical framework for dealing with imperfect information.

Introduction

Dempster-Shafer (DS) theory of belief functions

- Dempster-Shafer (DS) theory of belief functions is a flexible mathematical framework for dealing with imperfect information.
- Also known as Dempster-Shafer (DS) theory or Evidence theory or Belief Function Theory.

Introduction

Dempster-Shafer (DS) theory of belief functions

- Dempster-Shafer (DS) theory of belief functions is a flexible mathematical framework for dealing with imperfect information.
- Also known as Dempster-Shafer (DS) theory or Evidence theory or Belief Function Theory.
- It was introduced by A. P. Dempster in the 1960's for statistical inference, and developed by G. Shafer in the late 1970's into a general theory for reasoning under uncertainty.

Introduction

Dempster-Shafer (DS) theory of belief functions

- Dempster-Shafer (DS) theory of belief functions is a flexible mathematical framework for dealing with imperfect information.
- Also known as Dempster-Shafer (DS) theory or Evidence theory or Belief Function Theory.
- It was introduced by A. P. Dempster in the 1960's for statistical inference, and developed by G. Shafer in the late 1970's into a general theory for reasoning under uncertainty.
- DS encompasses probability theory and set-membership approaches as special cases.

Introduction

Dempster-Shafer (DS) theory of belief functions

- Dempster-Shafer (DS) theory of belief functions is a flexible mathematical framework for dealing with imperfect information.
- Also known as Dempster-Shafer (DS) theory or Evidence theory or Belief Function Theory.
- It was introduced by A. P. Dempster in the 1960's for statistical inference, and developed by G. Shafer in the late 1970's into a general theory for reasoning under uncertainty.
- DS encompasses probability theory and set-membership approaches as special cases.
- It is very general: many applications in AI (expert systems, machine learning), engineering (information fusion, uncertainty quantification, risk analysis), statistical inferences, etc.
- Evidential reasoning can be applied to very large problems.

Introduction

- Uncertainty

Example: "I think John is 1.8 m tall"
In this case, the piece of information John is 1.8 m tall is precise but uncertain

- Imprecision

Example: "John is between 1.7 m and 1.9 m tall"
In this case, the piece of information "John is between 1.7 m and 1.9 m tall" is certain but imprecise

Introduction

- Uncertainty

Example: "I think John is 1.8 m tall"
In this case, the piece of information John is 1.8 m tall is precise but uncertain

- Imprecision

Example: "John is between 1.7 m and 1.9 m tall"
In this case, the piece of information "John is between 1.7 m and 1.9 m tall" is certain but imprecise

- Imprecision and uncertainty

Example: "I think John is between 1.7 m and 1.9 m tall"
In this case, the piece of information "John is between 1.7 m and 1.9 m tall" is both uncertain and imprecise

Introduction

- Uncertainty \Rightarrow Classicaly tackled with probabilities

Example: "I think John is 1.8 m tall"
In this case, the piece of information John is 1.8 m tall is precise but uncertain

- Imprecision

Example: "John is between 1.7 m and 1.9 m tall"
In this case, the piece of information "John is between 1.7 m and 1.9 m tall" is certain but imprecise

- Imprecision and uncertainty

Example: "I think John is between 1.7 m and 1.9 m tall"
In this case, the piece of information "John is between 1.7 m and 1.9 m tall" is both uncertain and imprecise

Introduction

- Uncertainty \Rightarrow Classicaly tackled with probabilities

Example: "I think John is 1.8 m tall"
In this case, the piece of information John is 1.8 m tall is precise but uncertain

- Imprecision \Rightarrow Classicaly tackled with sets

Example: "John is between 1.7 m and 1.9 m tall"
In this case, the piece of information "John is between 1.7 m and 1.9 m tall" is certain but imprecise

- Imprecision and uncertainty

Example: "I think John is between 1.7 m and 1.9 m tall"
In this case, the piece of information "John is between 1.7 m and 1.9 m tall" is both uncertain and imprecise

```
Introduction

\title{
Aleatory uncertainty (Randomness)
}

\section*{VS}

\author{
Epistemic uncertainty (Lack of knowledge)
}

\section*{Introduction}

Difficulties to represent ignorance with probabilities
"Le tiercé c'est mon dada" (O. Sharif)
- Consider a horse race with three horses \(h_{1}, h_{2}\) and \(h_{3}\)

Expert 1: "All three horses have an equal chance of winning (same level)"

Model: \(p\left(\left\{h_{1}\right\}\right)=p\left(\left\{h_{2}\right\}\right)=p\left(\left\{h_{3}\right\}\right)=\frac{1}{3}\)

Expert 2: "I have no idea (complete ignorance)"
Model: \(p\left(\left\{h_{1}\right\}\right)=p\left(\left\{h_{2}\right\}\right)=p\left(\left\{h_{3}\right\}\right)=\frac{1}{3}\)


Le Derby d'Epsom (Géricault)

\section*{Introduction}

Difficulties to represent ignorance with probabilities
"Le tiercé c'est mon dada" (O. Sharif)
- Consider a horse race with three horses \(h_{1}, h_{2}\) and \(h_{3}\)

Expert 1: "All three horses have an equal chance of winning (same level)"

Model: \(p\left(\left\{h_{1}\right\}\right)=p\left(\left\{h_{2}\right\}\right)=p\left(\left\{h_{3}\right\}\right)=\frac{1}{3}\)

Expert 2: "I have no idea (complete ignorance)"
Model: \(p\left(\left\{h_{1}\right\}\right)=p\left(\left\{h_{2}\right\}\right)=p\left(\left\{h_{3}\right\}\right)=\frac{1}{3}\)


Le Derby d'Epsom (Géricault)
- Problem: Two distinct pieces of information are modeled identically.
- There is a need for a richer model.

\section*{Outline}

Representation of information

Combining information

Decision making

\author{
Conclusion
}

\section*{Outline}

\section*{Representation of information}

\section*{Combining information}

\section*{Decision making}

\section*{Conclusion}

\section*{Representation of information}

\section*{Mass functions - Definition}
- Let us consider a variable of interest \(X\) taking its values into a finite set of hypotheses \(\Omega=\left\{\omega_{1}, \ldots, \omega_{K}\right\}\) called the universe or the frame of discernment.
- Example: the horse that will win the race. \(\Omega=\left\{h_{1}, h_{2}, h_{3}\right\}\)
- A piece of information regarding the value \(\omega_{0}\) taken by this variable can be represented using a mass function (MF) \(m\) defined as a mapping \(m: 2^{\Omega} \rightarrow[0,1]\) verifying
\[
\sum_{A \subseteq \Omega} m^{\Omega}(A)=1
\]
- The real \(m(A)\) represents the part of belief allocated to the hypothesis that the searched true value \(\omega_{0}\) belongs to \(A\) and nothing more.
- A set \(A\) s.t. \(m(A)>0\) is called a focal set of \(m\).

\section*{Representation of information}

\section*{Mass functions - Example}
"Si vous avez perdu au tiercé, vengez-vous. Mangez du cheval." (P. Dac)
- Let us consider again the horse race example with \(\Omega=\left\{h_{1}, h_{2}, h_{3}\right\}\)

Expert 1: "All three horses have an equal chance of winning (same level)"

Model: \(m\left(\left\{h_{1}\right\}\right)=m\left(\left\{h_{2}\right\}\right)=m\left(\left\{h_{3}\right\}\right)=\frac{1}{3}\)

Expert 2: "I have no idea (complete ignorance)"
Model: \(m\left(\left\{h_{1}, h_{2}, h_{3}\right\}\right)=1\)


Le Derby d'Epsom (Géricault)

\section*{Representation of information}
- If the evidence tells us that the truth is in \(A \subseteq \Omega\) for sure, then we have a logical or categorical mass function \(m_{A}\) s.t. \(m_{A}(A)=1\).
- \(m_{\Omega}\) represents the total ignorance, it is called the vacuous mass function
- If all focal sets of \(m\) are singletons, \(m\) is said to be Bayesian. It is equivalent to a probability distribution.
- A mass function can thus be seen as:
- a generalized set
- a generalized probability distribution

\section*{Representation of information}

\section*{Other representations - Belief and Plausibility Functions}
- A MF \(m\) is in one-to-one correspondence (each function represents the same information) with :
- a belief function Bel defined for all \(A \subseteq \Omega\) by:
\[
\operatorname{Bel}(A)=\sum_{\emptyset \neq B \subseteq A} m(B)
\]
\(\operatorname{Bel}(A)\) represents the total degree of belief supporting the fact that \(\omega_{0} \in A\) (Total support in \(A\) )
- a plausibility function \(P /\) defined for all \(A \subseteq \Omega\) by:
\[
P l(A)=\sum_{A \cap B \neq \emptyset} m(B)=\operatorname{Bel}(\Omega)-\operatorname{Bel}(\bar{A})
\]
with \(\bar{A}=\Omega \backslash A\).
\(P I(A)\) represents the total sum of beliefs that are not in contradiction with \(A\) (Consistency with \(A\) )

\section*{Representation of information}

\section*{Example}

With \(\Omega=\{a, b, c\}, m(\{a\})=0.3, m(\{b\})=0.4\) and \(m(\Omega)=0.3\)

Let us compute \(\operatorname{Bel}(\{a, b\})\) as an example, we have
\[
\begin{aligned}
\operatorname{Bel}(\{a, b\}) & =\sum_{B: \emptyset \neq B \subseteq\{a, b\}} m(B) \\
& =m(\{a\})+m(\{b\})+m(\{a, b\})=.7
\end{aligned}
\]

For \(P l\), let us compute \(P I(\{a, b\})\) as an example as well
\[
\begin{aligned}
P I(\{a, b\}) & =\sum_{B: B \cap\{a, b\} \neq \emptyset} \\
& =m(\{a\})+m(\{b\})+m(\{a, b\})+m(\{a, c\})+m(\{b, c\})+m(\Omega) \\
& =1
\end{aligned}
\]

\section*{Representation of information}

\section*{Example}

With \(\Omega=\{a, b, c\}, m(\{a\})=0.3, m(\{b\})=0.4\) and \(m(\Omega)=0.3\)
\begin{tabular}{ccccc}
\hline bin.order & & \(m\) & Bel & \(P l\) \\
\hline 000 & \(\emptyset\) & & & \\
001 & \(a\) & .3 & & \\
010 & \(b\) & .4 & & \\
011 & \(a, b\) & & & \\
100 & \(c\) & & & \\
101 & \(a, c\) & & & \\
110 & \(b, c\) & & & \\
111 & \(a, b, c\) & .3 & & \\
\hline
\end{tabular}

\section*{Representation of information}

\section*{Example in R with the ibelief package}
\(>\) library(ibelief)
\(>\mathrm{m}=\mathrm{c}(0, .3, .4,0,0,0,0, .3)\)
\(>\mathrm{pl}=\mathrm{mtopl}(\mathrm{m})\)
\(>\) bel \(=\) mtobel \((\mathrm{m})\)

\section*{Representation of information}

\section*{Example}

Example: With \(\Omega=\{a, b, c\}, m(\{a\})=0.3, m(\{b\})=0.4\) and \(m(\Omega)=\) 0.3
\begin{tabular}{ccccc}
\hline bin.order & & \(m\) & \(B e l\) & \(P I\) \\
\hline 000 & \(\emptyset\) & & & \\
001 & \(a\) & .3 & .3 & .6 \\
010 & \(b\) & .4 & .4 & .7 \\
011 & \(a, b\) & & .7 & 1 \\
100 & \(c\) & & & .3 \\
101 & \(a, c\) & & .3 & .6 \\
110 & \(b, c\) & & .4 & .7 \\
111 & \(a, b, c\) & .3 & 1 & 1 \\
\hline
\end{tabular}

\section*{Representation of information}

\section*{Properties}
- \(\operatorname{Bel}(\emptyset)=P I(\emptyset)=0\)
- \(\operatorname{Bel}(\Omega) \leq 1\) and \(P l(\Omega) \leq 1\) (as \(m(\emptyset)\) could be positive)
- \(\operatorname{Bel}(A) \leq P I(A)\)
- \(P l(A)=1-\operatorname{Bel}(\bar{A})\)
- If \(m\) is Bayesian (i.e. all focal elements are singletons) then \(B e l=P /\) is a probability measure

\section*{Representation of information \\ Intervals [ \(\operatorname{Bel}(A), \operatorname{PI}(A)]\)}
- The uncertainty about a proposition A is represented by two numbers: \(\operatorname{Bel}(A)\) and \(P I(A)\), with \(\operatorname{Bel}(A) \leq P I(A)\).
- The intervals \([\operatorname{Bel}(A), P I(A)]\) have maximum length when \(m\) is vacuous ( \(m=m_{\Omega}\) ).
- In this case: \(\operatorname{Bel}(A)=0\) for all \(A \neq \Omega\) and \(P I(A)=1\) for all \(A \neq \emptyset\)
- The intervals \([\operatorname{Bel}(A), P l(A)]\) have minimum length when \(m\) is Bayesian.
- In this case, for all \(A\) :
\[
\operatorname{Be} I(A)=P I(A)=\sum_{\omega \in A} m(\omega)
\]
and Bel and Pl are probability measures.

\section*{Representation of information}

\section*{Consonant mass function}
- If \(m\) has its focal elements nested \(\left(A_{1} \subset A_{2} \subset \ldots \subset A_{n}\right.\), with \(A_{i}\), \(i \in\{1,2, \ldots, n\}\) the focal elements of \(m), m\) is said to be consonant.
- In this case, for all \(A \subseteq \Omega, B \subseteq \Omega\) :
\[
\operatorname{Bel}(A \cap B)=\min (\operatorname{Bel}(A), \operatorname{Bel}(B))
\]
and
\[
P l(A \cup B)=\max (P I(A), P l(B))
\]
meaning \(P l\) is a possibility measure and \(B e l\) is its dual necessity measure.

\section*{Outline}

\section*{Representation of information}

\author{
Combining information
}

\section*{Decision making}

\section*{Conclusion}

\section*{Cunjunctive Rule of Combination}
- Two mass functions \(m_{1}\) and \(m_{2}\) from two reliable and distinct sources of information can be combined using the conjunctive rule of combination (CRC) defined by:
\[
\left(m_{1} \odot m_{2}\right)(A)=m_{1} \odot 2(A)=\sum_{B \cap C=A} m_{1}(B) \cdot m_{2}(C), \quad \forall A \subseteq \Omega .
\]

\section*{Cunjunctive Rule of Combination}

\section*{Example}

With \(\Omega=\{a, b, c\}\), let us consider a MF \(m_{1}\) and another independent MF \(m_{2}\) s.t.
\[
\left\{\begin{array} { l } 
{ m _ { 1 } ( \{ b \} ) = . 4 } \\
{ m _ { 1 } ( \{ a , b \} ) = . 6 }
\end{array} \text { and } \left\{\begin{array}{l}
m_{2}(\{b, c\})= \\
m_{2}(\{a, b, c\})= \\
\hline
\end{array}\right.\right.
\]
\begin{tabular}{|c|c|c|}
\hline CRC & \(m_{2}(\{b, c\})=.3\) & \(m_{2}(\{a, b, c\})=.7\) \\
\hline\(m_{1}(\{b\})=.4\) & \(\{b\} \cap\{b, c\}=\{b\}\) & \(\{b\} \cap\{a, b, c\}=\{b\}\) \\
& \(.4 \times .3=.12\) & \(.4 \times .7=.28\) \\
\hline \multirow{2}{*}{\(m_{1}(\{a, b\})=.6\)} & \(\{a, b\} \cap\{b, c\}=\{b\}\) & \(\{a, b\} \cap\{a, b, c\}=\{a, b\}\) \\
& \(.6 \times .3=.18\) & \(.6 \times .7=.42\) \\
\hline
\end{tabular}

The CRC \(m=m_{1} ® m_{2}\) is given by
\(-m(\{b\})=.4 \times .3+.4 \times .7+.6 \times .3=.58\)
- \(m(\{a, b\})=.6 \times .7=.42\)

\section*{Dempster's rule}
- If and only if \(m_{1}\) and \(m_{2}\) are two reliable and distinct mass functions (Axiomatic justifications, see e.g. Smets 2007)
- Dempster's rule \(:=\) CRC normalized: \(m_{1 \oplus 2}(\emptyset)=0\) and
\[
\begin{aligned}
& \left(m_{1} \oplus m_{2}\right)(A)=m_{1 \oplus 2}(A)=\frac{1}{1-\kappa} \sum_{B \cap C=A} m_{1}(B) \cdot m_{2}(C), \quad \forall A \neq \emptyset \\
& \text { with } \kappa=\sum_{B \cap C=\emptyset} m_{1}(B) \cdot m_{2}(C) \text { (called degree of conflict). }
\end{aligned}
\]

\section*{Disjunctive Rule of Combination}
- If the sources are distinct but only one of the sources is reliable (and we don't know which one), the disjunctive rule of combination (DRC) defined as follows can be applied:
\[
\left(m_{1} \odot m_{2}\right)(A)=m_{1 \circlearrowleft 2}(A)=\sum_{B \cup C=A} m_{1}(B) \cdot m_{2}(C), \quad \forall A \subseteq \Omega .
\]

\section*{Properties for these rules}
- With these rules \(\odot, \oplus\) and \((\mathbb{)}\), the order the sources are combined does not change the results
- \(m_{1} ® m_{2}=m_{2} ® m_{1}\) (Commutativity) (Likewise for \(\oplus\) and \(\oplus\) )
- \(\left(m_{1} \odot m_{2}\right) ® m_{3}=m_{1} \odot\left(m_{2} ® m_{3}\right)\) (Associativity) (Likewise for \(\oplus\) and © )

\section*{Combining information}

\section*{Example}
\begin{tabular}{cccccc}
\hline & \(m_{1}\) & \(m_{2}\) & \(m_{1} \oplus m_{2}\) & \(m_{1} \oplus m_{2}\) & \(m_{1} \oplus m_{2}\) \\
\hline\(\emptyset\) & & & & & \\
\(a\) & .3 & & & & \\
\(b\) & .4 & & & & \\
\(a, b\) & & .5 & & & \\
\(c\) & & & & & \\
\(a, c\) & & .1 & & & \\
\(b, c\) & & & & & \\
\(a, b, c\) & .3 & .4 & & & \\
\hline
\end{tabular}

\section*{Combining information}

\section*{Example in R with the ibelief package}
\(>\mathrm{ml}=\mathrm{c}(0, .3, .4,0,0,0,0, .3)\)
\(>\mathrm{m} 2=\mathrm{c}(0,0,0, .5,0, .1,0, .4)\)
\(>\) mcunjunctive \(=\operatorname{DST}(\operatorname{cbind}(m 1, m 2), 1)\)
\(>\) mdempster \(=\operatorname{DST}(\operatorname{cbind}(m 1, m 2), 2)\)
\(>\operatorname{mdisjunctive}=\operatorname{DST}(\operatorname{cbind}(\mathrm{m} 1, \mathrm{~m} 2), 4)\)

\section*{Combining information}

\section*{Example}
\begin{tabular}{cccccc}
\hline & \(m_{1}\) & \(m_{2}\) & \(m_{1} \cap m_{2}\) & \(m_{1} \oplus m_{2}\) & \(m_{1}\left(m_{2}\right.\) \\
\hline\(\emptyset\) & & & .04 & & \\
\(a\) & .3 & & .30 & .312 & \\
\(b\) & .4 & & .36 & .375 & \\
\(a, b\) & & .5 & .15 & .156 & .35 \\
\(c\) & & & & & \\
\(a, c\) & & .1 & .03 & .031 & .03 \\
\(b, c\) & & & & & \\
\(a, b, c\) & .3 & .4 & .12 & .125 & .62 \\
\hline
\end{tabular}

\section*{Misconception about Dempster's rule}
- Following an old report from Zadeh (1979) - it is still nowadays repeated that "Dempster's rule yields counterintuitive results" (usually used as a justification to introduce new combination rules)
- Zadeh's example: \(\Omega=\{a, b, c\}\), two experts reporting:
- Expert 1: \(m_{1}(\{a\})=0.99, m_{1}(\{b\})=0.01\) and \(m_{1}(\{c\})=0\)
- Expert 2: \(m_{2}(\{a\})=0, m_{2}(\{b\})=0.01\) and \(m_{2}(\{c\})=0.99\)
- Then \(m_{1 \oplus 2}(b)=1\), which is claimed to be "counterintuitive" by some authors because both experts considered \(b\) as very unlikely.
- But:
- Both experts are totally reliable.
- Expert 1 indicates that \(c\) is absolutely impossible.
- Expert 2 indicates that \(a\) is absolutely impossible.
- Then \(b\) is the only possibility. We are in a situation, which is possible for both experts, where the true answer is \(b\).
- Dempster's rule does produce sound results when used cordance with the axioms, from which it derived.

\section*{Discounting}

A simple correction example (Shafer, 1976).
Discounting of a mass function (MF) \(m\) is defined by (Shafer,1976):
\[
\left\{\begin{aligned}
& \alpha \\
&{ }^{\alpha}(A)=(1-\alpha) m(A), \quad \forall A \subset \Omega \\
&{ }^{\alpha} m(\Omega)=(1-\alpha) m(\Omega)+\alpha
\end{aligned}\right.
\]
where \(\alpha \in[0,1]\) is the discount rate.

\section*{Discounting}

\section*{A simple correction example (Shafer, 1976).}

Discounting of a mass function (MF) \(m\) is defined by (Shafer, 1976):
\[
\left\{\begin{aligned}
{ }^{\alpha} m(A) & =(1-\alpha) m(A), \quad \forall A \subset \Omega, \\
{ }^{\alpha} m(\Omega) & =(1-\alpha) m(\Omega)+\alpha,
\end{aligned}\right.
\]
where \(\alpha \in[0,1]\) is the discount rate.
Example:
- \(\Omega=\{a, b, c\}\)
- \(m(\{a\})=.2, m(\{b\})=.4\) and \(m(\{a, b\})=.4\)
- With discount rate \(\alpha=.2\) :
\[
\left\{\begin{array}{lll}
{ }^{\alpha} m(\{a\}) & =.8 \times .2 & =.16 \\
{ }^{\alpha} m(\{b\}) & =.8 \times .4 & =.32 \\
{ }^{\alpha} m(\{a, b\}) & =.8 \times .4 & =.32 \\
{ }^{\alpha} m(\Omega) & =.8 \times .0+.2=.20
\end{array}\right.
\]

\section*{Discounting}
\(>\mathrm{m}=\mathrm{c}(0, .2, .4, .4,0,0,0,0)\)
\(>\) mdisc \(=\) discounting \((\mathrm{m}, .8)\)
L'argument placé dans cette fonction est \(1-\alpha=.8\) qui est le degré de fiabilité de la source ( \(80 \%\) des masses sont gardées dans ce cas)

\section*{Discounting}

\section*{Results in terms of masses transfers}

For each focal element \(B\) of \(m_{S}\) :
\[
\underbrace{(1-\alpha) \cdot m_{S}(B)}_{\alpha \cdot m_{S}(B)}
\]
- A part \((1-\alpha) \cdot m_{S}(B)\) remains on \(B\).
- A part \(\alpha \cdot m_{S}(B)\) is transferred to \(\Omega\).

\section*{Discounting}

\section*{Matrix representation (Smets, 2002)}

Discounting \({ }^{\alpha} m\) is a generalization of \(m\left({ }^{\alpha} m \sqsupseteq_{s} m\right)\) :
\[
{ }^{\alpha} m(A)=\sum_{B \subseteq \Omega}{ }^{\alpha} G(A, B) m(B)
\]
with \({ }^{\alpha} \mathbf{G}\) a generalisation matrix defined by:
\[
\begin{aligned}
& { }^{\alpha} G(A, B)= \begin{cases}1-\alpha & \text { if } A=B \neq \Omega, \\
\alpha & \text { if } A=\Omega \text { and } B \subset A, \\
1 & \text { if } A=B=\Omega \\
0 & \text { otherwise. }\end{cases} \\
& { }^{\alpha} \mathbf{G}=\left(\begin{array}{ccccc}
1-\alpha & 0 & \ldots & 0 & 0 \\
0 & 1-\alpha & \ldots & 0 & 0 \\
0 & 0 & \ddots & 0 & 0 \\
0 & 0 & \ldots & 1-\alpha & 0 \\
\alpha & \alpha & \ldots & \alpha & 1
\end{array}\right)
\end{aligned}
\]

\section*{Discounting}

\section*{Matrix representation: example}

With \(\alpha=.2, \beta=1-\alpha=.8\) and \(\Omega=\{a, b, c\}\) :
\[
{ }^{\alpha} m \quad=\quad{ }^{\alpha} G(A, B)
\]
\begin{tabular}{l}
\(000: \emptyset\) \\
\(001:\{a\}\) \\
\(010:\{b\}\) \\
\(011:\{a, b\}\) \\
\(100:\{c\}\) \\
\(101:\{a, c\}\) \\
\(110:\{b, c\}\) \\
\(111:\{a, b, c\}\)
\end{tabular}\(\quad\left(\begin{array}{l}.0 \\
.16 \\
.32 \\
.32 \\
.0 \\
.0 \\
.0 \\
.20\end{array}\right)=\left(\begin{array}{llllllll}\beta & & & & & & & \\
& \beta & & & & & & \\
& & \beta & & & & & \\
& & & \beta & & & & \\
& & & & \beta & & & \\
& & & & & \beta & & \\
\alpha & 1\end{array}\right) \cdot\left(\begin{array}{l}.0 \\
.2 \\
.4 \\
.4 \\
.0 \\
.0 \\
.0 \\
.0\end{array}\right)\)

\section*{Outline}

\section*{Representation of information}

\section*{Combining information}

Decision making

\section*{Conclusion}

\section*{Decision making}

\section*{Making Hard Decisions}
- A way to make a hard decision is to choose a decision \(d=\omega \in \Omega\) maximizing a probability transform of \(m\), as for example using the Pignistic transform BetP defined by:
\[
\operatorname{Bet} P(\{\omega\})=\sum_{A \subseteq \Omega, \omega \in A} \frac{m(A)}{|A|(1-m(\emptyset))}, \quad \forall \omega \in \Omega .
\]
- Example: With \(\Omega=\{a, b, c\}, m(\{a\})=0.3, m(\{b\})=0.4\) and \(m(\Omega)=0.3\)
\[
\operatorname{Bet} P=\left\{\begin{array}{l}
\{a\} \mapsto 0.3+\frac{0.3}{3}=0.4 \\
\{b\} \mapsto 0.4+\frac{0.3}{3}=0.5 \\
\{c\} \mapsto 0.0+\frac{0.3}{3}=0.1
\end{array}\right.
\]

\section*{Decision making}

Making Hard Decisions: Example in R with the ibelief package
\(>\mathrm{m}=\mathrm{c}(0, .3, .4,0,0,0,0, .3)\)
\(>\operatorname{betp}=\operatorname{mtobetp}(m)\)

\section*{Decision making}

\section*{Making Partial Decisions}
- A way to make a partial decision is to choose a set-valued decision \(d=A \subseteq \Omega\) composed of elements of \(\Omega\), which are not dominated according to a preference relation:
1. The relation of strong dominance or interval dominance defined by
\[
\omega \succeq_{s d} \omega^{\prime} \Longleftrightarrow \operatorname{Bel}(\{\omega\}) \geq P I\left(\left\{\omega^{\prime}\right\}\right)
\]
2. The relation of weak dominance defined by
\[
\omega \succeq_{w d} \omega^{\prime} \Longleftrightarrow \operatorname{Bel}(\{\omega\}) \geq \operatorname{Bel}\left(\left\{\omega^{\prime}\right\}\right) \text { and } \operatorname{PI}(\{\omega\}) \geq \operatorname{Pl}\left(\left\{\omega^{\prime}\right\}\right)
\]

\section*{Decision making}

An example with partial decisions using the strong and weak dominance criteria
Example: With \(\Omega=\{a, b, c\}, m(\{a\})=0.3, m(\{b\})=0.4\) and \(m(\Omega)=0.3\)
\[
\text { Bel }=\left\{\begin{array}{l}
\{a\} \mapsto 0.3 \\
\{b\} \mapsto 0.4 \\
\{c\} \mapsto 0.0
\end{array} \quad P I=\left\{\begin{array}{l}
\{a\} \mapsto 0.6 \\
\{b\} \mapsto 0.7 \\
\{c\} \mapsto 0.3
\end{array}\right.\right.
\]
\begin{tabular}{|l|c|}
\hline Relation SD & Non-dominated \\
\hline \(\operatorname{Bel}(\{b\})=.4 \nsupseteq \operatorname{Pl}(\{a\})=.6\) and \(\operatorname{Bel}(\{c\})=0 \nsupseteq P l(\{a\})=.6\) & a \\
\(\operatorname{Bel}(\{a\})=.3 \nsupseteq P I(\{b\})=.7\) and \(\operatorname{Bel}(\{c\})=0 \nsupseteq P I(\{b\})=.7\) & b \\
\(\operatorname{Bel}(\{a\})=.3 \geq P I(\{c\})=.3\) (so \(\left.a \succeq_{\text {sd }} c\right)\) & - \\
\hline
\end{tabular}

Conclusion using SD: \(d=\{a, b\}\).
\begin{tabular}{|l|c|}
\hline Relation WD & Dominated \\
\hline \(\operatorname{Bel}(\{b\})=0.4 \geq \operatorname{Bel}(\{a\})=0.3\) and \(P I(\{b\})=0.7 \geq P l(\{a\})=0.6\left(\right.\) so \(\left.b \succeq_{w d} a\right)\) & \(a\) \\
\(\operatorname{Bel}(\{b\})=0.4 \geq \operatorname{Bel}(\{c\})=0.0\) and \(P l(\{b\})=0.7 \geq P l(\{c\})=0.3\left(\right.\) so \(\left.b \succeq_{w d} c\right)\) & \(c\) \\
\hline
\end{tabular}

Conclusion using WD: \(d=\{b\}\).

\section*{Outline}

\section*{Representation of information}

\section*{Combining information}

\section*{Decision making}

Conclusion

\section*{Conclusion}
- Dempster-Shafer (DS) theory of belief functions is a flexible mathematical framework for dealing with imperfect information.
- It encompasses probability theory and set-membership approaches as special cases.
- Belief functions can be seen as weighted opinions.

\section*{References to start learning Belief functions}
[1] https://bfasociety.org/\#schools
[2] T. Denoeux' talks:
https://www.hds.utc.fr/~tdenoeux/dokuwiki/en/talks
[2] T. Denoeux' teaching:
https://www.hds.utc.fr/~tdenoeux/dokuwiki/en/teaching
[3] G. Shafer. A mathematical theory of evidence. Princeton, N.J.: Princeton University Press, 1976
[4] P. Smets. "The application of the matrix calculus to belief functions". In: International Journal of Approximate Reasoning 31.1-2 (2002), pp. 1-30
[5] P. Smets. "Analyzing the Combination of Conflicting Belief Functions". In: Information Fusion 8.4 (2007), pp. 387-412
[6] T. Denœux. "Decision-Making with Belief Functions: a Review".
In: International Journal of Approximate Reasoning 109 (2019),
pp. 87-110

\section*{Thank you for your attention.}```

