On Belief Function Corrections

David Mercier (with discussions with Frédéric Pichon)

University of Artois, EA 3926 LGI2A, Béthune, France

2017 BFAS School, Xi’an, China, Saturday, July 8th, 2017

Introduction

Main idea

- For a piece of information to be useful, it has to be interpreted with respect to the quality of the source which provides it.

Introduction

Main idea

- For a piece of information to be useful, it has to be interpreted with respect to the quality of the source which provides it.
- No easy task as

Introduction

Main idea

- For a piece of information to be useful, it has to be interpreted with respect to the quality of the source which provides it.
- No easy task as

Problem 1 The quality of the source may come in many guises.

- E.g. Reliable, Biased, Untruthful, ...

Introduction

Main idea

- For a piece of information to be useful, it has to be interpreted with respect to the quality of the source which provides it.
- No easy task as

Problem 1 The quality of the source may come in many guises.

- E.g. Reliable, Biased, Untruthful, ...

Problem 2 The quality of the source may only be known with some uncertainty.

Introduction

- You want to know the temperature t.
- You take a thermometer T, which gives you a temperature of $t=55^{\circ} \mathrm{C}$.

Celsius Fahrenheit

Introduction

- You want to know the temperature t.
- You take a thermometer T, which gives you a temperature of $t=55^{\circ} \mathrm{C}$.
- Example 1: T is reliable

Celsius Fahrenheit

Introduction

- You want to know the temperature t.
- You take a thermometer T, which gives you a temperature of $t=55^{\circ} \mathrm{C}$.
- Example 1: T is reliable
\Rightarrow You can then conclude $t=55^{\circ} \mathrm{C}$

Celsius Fahrenheit

Introduction

- You want to know the temperature t.
- You take a thermometer T, which gives you a temperature of $t=55^{\circ} \mathrm{C}$.
- Example 1: T is reliable
\Rightarrow You can then conclude $t=55^{\circ} \mathrm{C}$
- Example 2: T is unreliable

Celsius Fahrenheit

Introduction

- You want to know the temperature t.
- You take a thermometer T, which gives you a temperature of $t=55^{\circ} \mathrm{C}$.
- Example 1: T is reliable
\Rightarrow You can then conclude $t=55^{\circ} \mathrm{C}$
- Example 2: T is unreliable
$\Rightarrow t \in\{$ set of all possible temperatures $\}$

Celsius Fahrenheit

Introduction

- You want to know the temperature t.
- You take a thermometer T, which gives you a temperature of $t=55^{\circ} \mathrm{C}$.
- Example 1: T is reliable \Rightarrow You can then conclude $t=55^{\circ} \mathrm{C}$
- Example 2: T is unreliable $\Rightarrow t \in\{$ set of all possible temperatures $\}$
- Example 3: T is reliable in the context $t \in\left\{-38^{\circ} \mathrm{C}, \ldots, 356^{\circ} \mathrm{C}\right\}$ (range of mercury thermometers) and unreliable for the other temperatures.

Celsius Fahrenheit
$100^{\circ} \mathrm{C}$
$90^{\circ} \mathrm{C}$
$80^{\circ} \mathrm{C}$
$70^{\circ} \mathrm{C}$
$60^{\circ} \mathrm{C}$
$50^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$
$30^{\circ} \mathrm{C}$
$20^{\circ} \mathrm{C}$
$10^{\circ} \mathrm{C}$

$0^{\circ} \mathrm{C}$$\quad$| $212^{\circ} \mathrm{F}$ |
| ---: |
| $-192^{\circ} \mathrm{F}$ |
| $-172^{\circ} \mathrm{F}$ |
| $-152^{\circ} \mathrm{F}$ |
| $-132^{\circ} \mathrm{F}$ |
| $-112^{\circ} \mathrm{F}$ |
| $-92^{\circ} \mathrm{F}$ |
| $-72^{\circ} \mathrm{F}$ |
| $-52^{\circ} \mathrm{F}$ |
| $-32^{\circ} \mathrm{F}$ |

Introduction

- You want to know the temperature t.
- You take a thermometer T, which gives you a temperature of $t=55^{\circ} \mathrm{C}$.
- Example 1: T is reliable \Rightarrow You can then conclude $t=55^{\circ} \mathrm{C}$
- Example 2: T is unreliable $\Rightarrow t \in\{$ set of all possible temperatures $\}$
- Example 3: T is reliable in the context $t \in\left\{-38^{\circ} \mathrm{C}, \ldots, 356^{\circ} \mathrm{C}\right\}$ (range of mercury thermometers) and unreliable for the other temperatures.

$$
\Rightarrow t \in\left\{55^{\circ} \mathrm{C}\right\} \cup\left\{-38^{\circ} \mathrm{C}, \ldots, 356^{\circ} \mathrm{C}\right\}
$$

Celsius Fahrenheit

Introduction

- Example 4: T is partially reliable at one degree, which means that when it gives a temperature t, the true one is between $t-1^{\circ} \mathrm{C}$ and $t+1^{\circ} \mathrm{C}$.

Celsius Fahrenheit
$100^{\circ} \mathrm{C}$
$90^{\circ} \mathrm{C}$
$80^{\circ} \mathrm{C}$
$70^{\circ} \mathrm{C}$
$00^{\circ} \mathrm{C}$
$50^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$
$30^{\circ} \mathrm{C}$
$20^{\circ} \mathrm{C}$
$10^{\circ} \mathrm{C}$

$0^{\circ} \mathrm{C}$$\quad$| $2122^{\circ} \mathrm{F}$ |
| ---: |
| $-192^{\circ} \mathrm{F}$ |
| $-172^{\circ} \mathrm{F}$ |
| $-152^{\circ} \mathrm{F}$ |
| $-132^{\circ} \mathrm{F}$ |
| $-112^{\circ} \mathrm{F}$ |
| $-92^{\circ} \mathrm{F}$ |
| $-72^{\circ} \mathrm{F}$ |
| $-52^{\circ} \mathrm{F}$ |
| $-32^{\circ} \mathrm{F}$ |

Introduction

- Example 4: T is partially reliable at one degree, which means that when it gives a temperature t, the true one is between $t-1^{\circ} \mathrm{C}$ and $t+1^{\circ} \mathrm{C}$.

$$
\Rightarrow t \in\left\{54^{\circ} \mathrm{C}, 55^{\circ} \mathrm{C}, 56^{\circ} \mathrm{C}\right\}
$$

Celsius Fahrenheit
$100^{\circ} \mathrm{C}$
$90^{\circ} \mathrm{C}$
$80^{\circ} \mathrm{C}$
$70^{\circ} \mathrm{C}$
$60^{\circ} \mathrm{C}$
$50^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$
$30^{\circ} \mathrm{C}$
$20^{\circ} \mathrm{C}$
$10^{\circ} \mathrm{C}$

$0^{\circ} \mathrm{C}$$\quad$| $212^{\circ} \mathrm{F}$ |
| ---: |
| $-192^{\circ} \mathrm{F}$ |
| $-172^{\circ} \mathrm{F}$ |
| $-152^{\circ} \mathrm{F}$ |
| $-132^{\circ} \mathrm{F}$ |
| $-112^{\circ} \mathrm{F}$ |
| $-92^{\circ} \mathrm{F}$ |
| $-72^{\circ} \mathrm{F}$ |
| $-52^{\circ} \mathrm{F}$ |
| $-32^{\circ} \mathrm{F}$ |

Introduction

- Example 4: T is partially reliable at one degree, which means that when it gives a temperature t, the true one is between $t-1^{\circ} \mathrm{C}$ and $t+1^{\circ} \mathrm{C}$.

$$
\Rightarrow t \in\left\{54^{\circ} \mathrm{C}, 55^{\circ} \mathrm{C}, 56^{\circ} \mathrm{C}\right\}
$$

- Example 5: T is biased of one degree meaning that when it gives a temperature t, the true one is $t+1^{\circ} \mathrm{C}$.

Celsius Fahrenheit

$100^{\circ} \mathrm{C}$
$90^{\circ} \mathrm{C}$
$80^{\circ} \mathrm{C}$
$70^{\circ} \mathrm{C}$
$60^{\circ} \mathrm{C}$
$50^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$
$30^{\circ} \mathrm{C}-$
$20^{\circ} \mathrm{C}$
$10^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$
---:
$-192^{\circ} \mathrm{F}$
$-172^{\circ} \mathrm{F}$
$-152^{\circ} \mathrm{F}$
$-132^{\circ} \mathrm{F}$
$-112^{\circ} \mathrm{F}$
$-92^{\circ} \mathrm{F}$
$-72^{\circ} \mathrm{F}$
$-52^{\circ} \mathrm{F}$
$-32^{\circ} \mathrm{F}$

Introduction

- Example 4: T is partially reliable at one degree, which means that when it gives a temperature t, the true one is between $t-1^{\circ} \mathrm{C}$ and $t+1^{\circ} \mathrm{C}$.

$$
\Rightarrow t \in\left\{54^{\circ} \mathrm{C}, 55^{\circ} \mathrm{C}, 56^{\circ} \mathrm{C}\right\}
$$

- Example 5: T is biased of one degree meaning that when it gives a temperature t, the true one is $t+1^{\circ} \mathrm{C}$.

$$
\Rightarrow t=56^{\circ} \mathrm{C}
$$

Celsius Fahrenheit
$100^{\circ} \mathrm{C}$
$90^{\circ} \mathrm{C}$
$80^{\circ} \mathrm{C}$
$70^{\circ} \mathrm{C}$
$60^{\circ} \mathrm{C}$
$50^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$
$30^{\circ} \mathrm{C}$
$20^{\circ} \mathrm{C}$
$10^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$

\quad| $2122^{\circ} \mathrm{F}$ |
| ---: |
| $-192^{\circ} \mathrm{F}$ |
| $-172^{\circ} \mathrm{F}$ |
| $-152^{\circ} \mathrm{F}$ |
| $-132^{\circ} \mathrm{F}$ |
| $-112^{\circ} \mathrm{F}$ |
| $-92^{\circ} \mathrm{F}$ |
| $-72^{\circ} \mathrm{F}$ |
| $-52^{\circ} \mathrm{F}$ |
| $-32^{\circ} \mathrm{F}$ |

Introduction

- Example 4: T is partially reliable at one degree, which means that when it gives a temperature t, the true one is between $t-1^{\circ} \mathrm{C}$ and $t+1^{\circ} \mathrm{C}$.

$$
\Rightarrow t \in\left\{54^{\circ} \mathrm{C}, 55^{\circ} \mathrm{C}, 56^{\circ} \mathrm{C}\right\}
$$

- Example 5: T is biased of one degree meaning that when it gives a temperature t, the true one is $t+1^{\circ} \mathrm{C}$.

$$
\Rightarrow t=56^{\circ} \mathrm{C}
$$

- ...

Introduction

The quality of the source may only be known with some uncertainty

- The information on the quality of the source may also be uncertain and imprecise.

Celsius Fahrenheit
$100^{\circ} \mathrm{C}$
$90^{\circ} \mathrm{C}$
$80^{\circ} \mathrm{C}$
$70^{\circ} \mathrm{C}$
$60^{\circ} \mathrm{C}$
$50^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}-$
$30^{\circ} \mathrm{C}$
$20^{\circ} \mathrm{C}$
$10^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$

\quad| $-2122^{\circ} \mathrm{F}$ |
| ---: |
| $-192^{\circ} \mathrm{F}$ |
| $-172^{\circ} \mathrm{F}$ |
| $-152^{\circ} \mathrm{F}$ |
| $-132^{\circ} \mathrm{F}$ |
| $-112^{\circ} \mathrm{F}$ |
| $-92^{\circ} \mathrm{F}$ |
| $-72^{\circ} \mathrm{F}$ |
| $-52^{\circ} \mathrm{F}$ |
| $-32^{\circ} \mathrm{F}$ |

Introduction

The quality of the source may only be known with some uncertainty

- The information on the quality of the source may also be uncertain and imprecise.
- Example 6: One may believe to some degree that T is reliable.

Celsius Fahrenheit

$100^{\circ} \mathrm{C}$
$90^{\circ} \mathrm{C}$
$80^{\circ} \mathrm{C}-$
$70^{\circ} \mathrm{C}$
$60^{\circ} \mathrm{C}$
$50^{\circ} \mathrm{C}-$
$40^{\circ} \mathrm{C}-$
$30^{\circ} \mathrm{C}-$
$20^{\circ} \mathrm{C}$
$10^{\circ} \mathrm{C}-$
$0^{\circ} \mathrm{C}$
---:
$-192^{\circ} \mathrm{F}$
$-172^{\circ} \mathrm{F}$
$-152^{\circ} \mathrm{F}$
$-132^{\circ} \mathrm{F}$
$-112^{\circ} \mathrm{F}$
$-92^{\circ} \mathrm{F}$
$-72^{\circ} \mathrm{F}$
$-52^{\circ} \mathrm{F}$
$-32^{\circ} \mathrm{F}$

Introduction

The quality of the source may only be known with some uncertainty

- The information on the quality of the source may also be uncertain and imprecise.
- Example 6: One may believe to some degree that T is reliable.
- Use of the belief function theory

1. To model the information provided by the source.
2. To model the information on the quality of the source.
3. To infer the correction/adjustment of the information provided by the source according to the information on its quality.

Celsius Fahrenheit

Introduction

Let \mathbf{x} be a variable taking its values in a finite set \mathcal{X}. You want to know its value x.

Introduction

Correction with belief functions (BF): an illustration

A source S provides you a piece of information on the actual value of x

Source S

Let \mathbf{x} be a variable taking its values in a finite set \mathcal{X}.
You want to know its value x.

Introduction

Correction with belief functions (BF): an illustration
A source S provides you a piece of information on the actual value of x
Information on the quality of S :

- Reliable?
- Truthful?
- Biased?

Let \mathbf{x} be a variable taking its values in a finite set \mathcal{X}.
You want to know its value x.

Metaknowledge
\mathcal{H} set of possible states

Introduction

Correction with belief functions (BF): an illustration
A source S provides you a piece of information on the actual value of x
Information on the quality of S :

- Reliable?
- Truthful?
- Biased?

Let \mathbf{x} be a variable taking its values in a finite set \mathcal{X}.
You want to know its value x.

Correction

Metaknowledge

 \mathcal{H} set of possible states4 How to correct $m_{S}^{\mathcal{X}}\{\mathbf{x}\}$ in accordance with $m^{\mathcal{H}}$?

Introduction

Main objectives of the lecture

1. Give an overview of correction models with their justifications / derivations.

Introduction

1. Give an overview of correction models with their justifications / derivations.
2. Show how to automatically learn some of them from labelled data (which can also help to build belief functions).

Introduction

1. Give an overview of correction models with their justifications / derivations.
2. Show how to automatically learn some of them from labelled data (which can also help to build belief functions).
3. Give examples/illustrations of the flexibility and expressivity power of the belief function theory.

Outline

Discounting

Contextual discounting based on a coarsening

Behaviour Based Correction (BBC)
Contextual discounting (CD), reinforcement (CR) and negating (CN)

Learning CD, CR and CN from labelled data

Outline

Discounting

Contextual discounting based on a coarsening

Behaviour Based Correction (BBC)

Contextual discounting (CD), reinforcement (CR) and negating (CN)

Learning CD, CR and CN from labelled data

Discounting

A simple correction example (Shafer, 1976).
Discounting of a mass function (MF) m is defined by (Shafer,1976):

$$
\left\{\begin{aligned}
{ }^{\alpha} m(A) & =(1-\alpha) m(A), \quad \forall A \subset \mathcal{X}, \\
{ }^{\alpha} m(\mathcal{X}) & =(1-\alpha) m(\mathcal{X})+\alpha
\end{aligned}\right.
$$

where $\alpha \in[0,1]$ is the discount rate.

Discounting

A simple correction example (Shafer, 1976).

Discounting of a mass function (MF) m is defined by (Shafer, 1976):

$$
\left\{\begin{aligned}
\alpha^{\alpha} m(A) & =(1-\alpha) m(A), \quad \forall A \subset \mathcal{X} \\
{ }^{\alpha} m(\mathcal{X}) & =(1-\alpha) m(\mathcal{X})+\alpha
\end{aligned}\right.
$$

where $\alpha \in[0,1]$ is the discount rate.
Example:

- $\mathcal{X}=\left\{x_{1}, x_{2}, x_{3}\right\}$
- $m\left(\left\{x_{1}\right\}\right)=.2, m\left(\left\{x_{2}\right\}\right)=.4$ and $m\left(\left\{x_{1}, x_{2}\right\}\right)=.4$
- With discount rate $\alpha=.2$:

$$
\left\{\begin{array}{lll}
{ }^{\alpha} m\left(\left\{x_{1}\right\}\right) & =.8 \times .2 & =.16 \\
{ }^{\alpha} m\left(\left\{x_{2}\right\}\right) & =.8 \times .4 & =.32 \\
{ }^{\alpha} m\left(\left\{x_{1}, x_{2}\right\}\right) & =.8 \times .4 & =.32 \\
{ }^{\alpha} m(\mathcal{X}) & =.8 \times .0+.2=.20
\end{array}\right.
$$

Discounting

Results in terms of masses transfers

For each focal element B of m_{S} :

$$
\underbrace{(1-\alpha) \cdot m_{S}(B)}_{\alpha \cdot m_{S}(B)}
$$

- A part $(1-\alpha) \cdot m_{S}(B)$ remains on B.
- A part $\alpha \cdot m_{S}(B)$ is transferred to \mathcal{X}.

Discounting

Matrix representation (Smets, 2002)

Discounting ${ }^{\alpha} m$ is a generalization of $m\left({ }^{\alpha} m \sqsupseteq_{s} m\right)$:

$$
{ }^{\alpha} m(A)=\sum_{B \subseteq \mathcal{X}}{ }^{\alpha} G(A, B) m(B),
$$

with ${ }^{\alpha} \mathbf{G}$ a generalisation matrix defined by:

$$
\begin{gathered}
{ }^{\alpha} G(A, B)= \begin{cases}1-\alpha & \text { if } A=B \neq \mathcal{X}, \\
\alpha & \text { if } A=\mathcal{X} \text { and } B \subset A, \\
1 & \text { if } A=B=\mathcal{X} \\
0 & \text { otherwise. }\end{cases} \\
{ }^{\alpha} \mathbf{G}=\left(\begin{array}{ccccc}
1-\alpha & 0 & \ldots & 0 & 0 \\
0 & 1-\alpha & \cdots & 0 & 0 \\
0 & 0 & \ddots & 0 & 0 \\
0 & 0 & \ldots & 1-\alpha & 0 \\
\alpha & \alpha & \cdots & \alpha & 1
\end{array}\right) \\
\text { L्Cl2A }
\end{gathered}
$$

Discounting

Matrix representation: example

With $\alpha=.2, \beta=1-\alpha=.8$ and $\mathcal{X}=\left\{x_{1}, x_{2}, x_{3}\right\}:$

$$
{ }^{\alpha} m \quad=\quad{ }^{\alpha} G(A, B)
$$

$000: \emptyset$
$001:\left\{x_{1}\right\}$
$010:\left\{x_{2}\right\}$
$011:\left\{x_{1}, x_{2}\right\}$
$100:\left\{x_{3}\right\}$
$101:\left\{x_{1}, x_{3}\right\}$
$110:\left\{x_{2}, x_{3}\right\}$
$111:\left\{x_{1}, x_{2}, x_{3}\right\}$

.16

.32

.32

.0

.0

.0

.20\end{array}\right)=\left($$
\begin{array}{llllllll}\beta & & & & & & & \\
& \beta & & & & & & \\
& & \beta & & & & & \\
& & & \beta & & & & \\
& & & & \beta & & & \\
& & & & & \beta & & \\
\alpha & 1\end{array}
$$\right) \cdot\left($$
\begin{array}{l}.0 \\
.2 \\
.4 \\
.4 \\
.0 \\
.0 \\
.0 \\
.0\end{array}
$$\right)\)

Discounting

The source is reliable (r) or not $(\neg r) . \mathcal{H}=\{r, \neg r\}$. $m^{\mathcal{X}}[\{r\}]=m_{S}^{\mathcal{X}}$. $m^{\mathcal{X}}[\{\neg r\}]=m_{\mathcal{X}}$.

Source
\mathbf{x} a variable taking its values in a finite set \mathcal{X}.

Metaknowledge

Discounting

Derivation (Smets, 1993)

The source is reliable (r) or not $(\neg r) . \mathcal{H}=\{r, \neg r\}$. $m^{\mathcal{X}}[\{r\}]=m_{S}^{\mathcal{X}}$. $m^{\mathcal{X}}[\{\neg r\}]=m_{\mathcal{X}}$.

$$
\begin{cases}m^{\mathcal{H}}(\{r\}) & =1-\alpha, \\ m^{\mathcal{H}}(\mathcal{H}) & =\alpha\end{cases}
$$

Discounting

${ }^{\alpha} m$ is then obtained from $m^{\mathcal{H}}$ and $m_{S}^{\mathcal{X}}:{ }^{\alpha} m=$

$$
\underbrace{\left(m^{\mathcal{X}}[\{\neg r\}]^{\Uparrow \mathcal{X} \times \mathcal{H}} \odot m^{\mathcal{X}}[\{r\}]^{\Uparrow \mathcal{X} \times \mathcal{H}} \odot m^{\mathcal{H}(\mathcal{X} \times \mathcal{H}}\right)^{\downarrow \mathcal{X}} .}
$$

Marginalisation in the case of a product space

(recalls)

- MF $m^{\mathcal{X}_{1} \times \mathcal{X}_{2}}$ can be marginalised on \mathcal{X}_{1} by transferring each mass $m^{\mathcal{X}_{1} \times \mathcal{X}_{2}}(B), B \subseteq \mathcal{X}_{1} \times \mathcal{X}_{2}$, to the projection of B on \mathcal{X}_{1} :

$$
m^{\mathcal{X}_{1} \times \mathcal{X}_{2} \downarrow \mathcal{X}_{1}}(A)=\sum_{\left\{B \subseteq \mathcal{X}_{1} \times \mathcal{X}_{2} \mid \operatorname{proj}\left(B \downarrow \mathcal{X}_{1}\right)=A\right\}} m^{\mathcal{X}_{1} \times \mathcal{X}_{2}}(B), \forall A \subseteq \mathcal{X}_{1} .
$$

- Illustration

Vacuous extension in the case of a product space (recalls)

- Vacuous extension of MF $m^{\mathcal{X}_{1}}$ on $\mathcal{X}_{1} \times \mathcal{X}_{2}$ is defined by (s-least committed solution, cf Lecture 2 of T. Denœux):

$$
m^{\mathcal{X}_{1} \uparrow \mathcal{X}_{1} \times \mathcal{X}_{2}}(B)= \begin{cases}m_{1}^{\mathcal{X}}(A) & \text { if } B=A \times \mathcal{X}_{2}, A \subseteq \mathcal{X}_{1} \\ 0 & \text { otherwise }\end{cases}
$$

- Illustration

Conditioning in the case of a product space

(recalls)

- With $D \subseteq \mathcal{X}_{2}$, the conditioning of a MF $m^{\mathcal{X}_{1} \times \mathcal{X}_{2}}$ is noted $m^{\mathcal{X}_{1}}[D]$ and defined by:

$$
m^{\mathcal{X}_{1}}[D]=\left(m^{\mathcal{X}_{1} \times \mathcal{X}_{2}} \circledast m_{D}^{\mathcal{X}_{2} \uparrow \mathcal{X}_{1} \times \mathcal{X}_{2}}\right)^{\downarrow \mathcal{X}_{1}} .
$$

- Illustration

Deconditioning in the case of a product space

(recalls)

- Deconditioning of a MF $m^{\mathcal{X}_{1}}[D]$ on $\mathcal{X}_{1} \times \mathcal{X}_{2}$ is defined by (s-least committed solution):

$$
m^{\mathcal{X}_{1}}[D]^{\uparrow \mathcal{X}_{1} \times \mathcal{X}_{2}}\left(A \times D \cup \mathcal{X}_{1} \times \bar{D}\right)=m_{1}^{\mathcal{X}}[D](A), \quad \forall A \subseteq \mathcal{X}_{1} .
$$

- Illustration

Discounting

The source is reliable (r) or not $(\neg r) . \mathcal{H}=\{r, \neg r\}$. $m^{\mathcal{X}}[\{r\}]=m_{S}^{\mathcal{X}}$. $m^{\mathcal{X}}[\{\neg r\}]=m_{\mathcal{X}}$. $\begin{cases}m^{\mathcal{H}}(\{r\}) & =1 \\ m^{\mathcal{H}}(\mathcal{H}) & =\alpha .\end{cases}$
\mathbf{x} a variable taking its values in a finite set \mathcal{X}.

Metaknowledge

Discounting

${ }^{\alpha} m$ is then obtained from $m^{\mathcal{H}}$ and $m_{S}^{\mathcal{X}}:{ }^{\alpha} m=$
$\left(m^{\mathcal{X}}[\{\neg r\}]^{\uparrow \mathcal{X} \times \mathcal{H}} \odot m^{\mathcal{X}}[\{r\}]^{\uparrow \mathcal{X} \times \mathcal{H}} \odot m^{\mathcal{H} \uparrow \mathcal{X} \times \mathcal{H}}\right)^{\downarrow \mathcal{X}}$.

Discounting

The source is reliable (r) or not $(\neg r) . \mathcal{H}=\{r, \neg r\}$. $m^{\mathcal{X}}[\{r\}]=m_{S}^{\mathcal{X}}$. $m^{\mathcal{X}}[\{\neg r\}]=m_{\mathcal{X}}$. $\begin{cases}m^{\mathcal{H}}(\{r\}) & =1 \\ m^{\mathcal{H}}(\mathcal{H}) & =\alpha .\end{cases}$
\mathbf{x} a variable taking its values in a finite set \mathcal{X}.

Metaknowledge

Discounting

$$
\begin{aligned}
& { }^{\alpha} m \text { is then obtained from } m^{\mathcal{H}} \text { and } m_{S}^{\mathcal{X}}:{ }^{\alpha} m= \\
& \left(m^{\mathcal{X}}[\{\neg r\}]^{\uparrow \mathcal{X} \times \mathcal{H}} \odot m^{\mathcal{X}}[\{r\}]^{\uparrow \mathcal{X} \times \mathcal{H}} ® m^{\mathcal{H} \uparrow \mathcal{X} \times \mathcal{H}}\right)^{\downarrow \mathcal{X}} .
\end{aligned}
$$

Exercise: Do the computation (Solution in Smets 1993 Section 5.7 or Mercier et al. 2008 Section 2.5)

Discounting

- Discounting of a MF m can be expressed, with $\alpha \in[0,1]$, by:

$$
\left\{\begin{aligned}
{ }^{\alpha} m(A) & =(1-\alpha) m(A), \quad \forall A \subset \mathcal{X} \\
{ }^{\alpha} m(\mathcal{X}) & =(1-\alpha) m(\mathcal{X})+\alpha
\end{aligned}\right.
$$

- or, using categorical (or logical) MF $m_{\mathcal{X}}\left(m_{\mathcal{X}}(\mathcal{X})=1\right)$:

$$
{ }^{\alpha} m=(1-\alpha) m+\alpha m_{\mathcal{X}} .
$$

Simple MF and negative simple MF

(recalls)

- A MF m defined by $m(\mathcal{X})=w$ and $m(A)=1-w$, with $w \in[0,1]$ and $A \subset \mathcal{X}$, can be conveniently noted A^{w}. It is called a simple MF.

Simple MF and negative simple MF

(recalls)

- A MF m defined by $m(\mathcal{X})=w$ and $m(A)=1-w$, with $w \in[0,1]$ and $A \subset \mathcal{X}$, can be conveniently noted A^{w}. It is called a simple MF.

- A MF m such that $m(\emptyset)=v$ and $m(A)=1-v$, with $v \in[0,1]$, $A \subseteq \mathcal{X}, A \neq \emptyset$, can be conveniently noted A_{v}. It is called a negative simple MF.

Negation of a MF

(recalls)

- The negation \bar{m} of a MF m is defined by $\bar{m}(A)=m(\bar{A})$ for all $A \subset \mathcal{X}$.
- we have:

$$
\overline{A^{w}}=\overline{\left\{\begin{array}{lll}
\mathcal{X} & \mapsto & w \\
A & \mapsto & 1-w
\end{array}=\left\{\begin{array}{lll}
\overline{\mathcal{X}}=\emptyset & \mapsto & w \\
\bar{A} & \mapsto & 1-w
\end{array}=\bar{A}_{w} ~ . ~\right.\right.}
$$

Discounting

Expressions

- Discounting of a MF m can be expressed, with $\alpha \in[0,1], \beta=1-\alpha$, by:

$$
\left\{\begin{aligned}
{ }^{\alpha} m(A) & =\beta m(A), \quad \forall A \subset \mathcal{X}, \\
{ }^{\alpha} m(\mathcal{X}) & =\beta m(\mathcal{X})+\alpha,
\end{aligned}\right.
$$

- or, using categorical (or logical) MF $m_{\mathcal{X}}\left(m_{\mathcal{X}}(\mathcal{X})=1\right)$:

$$
{ }^{\alpha} m=\beta m+\alpha m_{\mathcal{X}},
$$

- or, using negative simple MF:

$$
{ }^{\alpha} m=m\left(\mathbb{)} \mathcal{X}_{\beta}=m(1)\left\{\begin{array}{rll}
\emptyset & \mapsto & \beta=1-\alpha \\
\mathcal{X} & \mapsto & \alpha .
\end{array}\right.\right.
$$

Outline

Discounting

Contextual discounting based on a coarsening

Behaviour Based Correction (BBC)

Contextual discounting (CD), reinforcement (CR) and negating (CN)

Learning CD, CR and CN from labelled data

Contextual discounting based on a coarsening

Main idea (Mercier et al. 2005, 2008)

- The reliability of a source may depend on the true value of the variable of interest x .

Contextual discounting based on a coarsening

Main idea (Mercier et al. 2005, 2008)

- The reliability of a source may depend on the true value of the variable of interest \mathbf{x}.
- Example 1: A mercury thermometer reliable if the temperature is in the range $\left\{-38^{\circ} \mathrm{C}, \ldots, 356^{\circ} \mathrm{C}\right\}$

Contextual discounting based on a coarsening

 Main idea (Mercier et al. 2005, 2008)- The reliability of a source may depend on the true value of the variable of interest x.
- Example 1: A mercury thermometer reliable if the temperature is in the range $\left\{-38^{\circ} \mathrm{C}, \ldots, 356^{\circ} \mathrm{C}\right\}$
- Example 2: A cardiologist may be more reliable to diagnose cardiac disease than other kinds of disease.

Contextual discounting based on a coarsening

Model

- Let \mathcal{A} be a partition of \mathcal{X} representing different contexts
- Example 1 (mercury thermometer): $\mathcal{A}=\left\{A_{1}, A_{2}\right\}$ with $A_{1}=\left\{-38^{\circ} \mathrm{C}, \ldots, 356^{\circ} \mathrm{C}\right\}$ and $A_{2}=\overline{A_{1}}$.

Contextual discounting based on a coarsening

Model

- Let \mathcal{A} be a partition of \mathcal{X} representing different contexts
- Example 1 (mercury thermometer): $\mathcal{A}=\left\{A_{1}, A_{2}\right\}$ with $A_{1}=\left\{-38^{\circ} \mathrm{C}, \ldots, 356^{\circ} \mathrm{C}\right\}$ and $A_{2}=\overline{A_{1}}$.
- The source can be in two states: reliable (r) or not $(\neg r), \mathcal{H}=\{r, \neg r\}$, $m^{\mathcal{X}}[\{r\}]=m_{S}^{\mathcal{X}}, m^{\mathcal{X}}[\{\neg r\}]=m_{\mathcal{X}}$.

Contextual discounting based on a coarsening

Model

- Let \mathcal{A} be a partition of \mathcal{X} representing different contexts
- Example 1 (mercury thermometer): $\mathcal{A}=\left\{A_{1}, A_{2}\right\}$ with $A_{1}=\left\{-38^{\circ} \mathrm{C}, \ldots, 356^{\circ} \mathrm{C}\right\}$ and $A_{2}=\overline{A_{1}}$.
- The source can be in two states: reliable (r) or not $(\neg r), \mathcal{H}=\{r, \neg r\}$, $m^{\mathcal{X}}[\{r\}]=m_{S}^{\mathcal{X}}, m^{\mathcal{X}}[\{\neg r\}]=m_{\mathcal{X}}$.
- For all contexts $A_{k} \in \mathcal{A}: m^{\mathcal{H}}\left[A_{k}\right](\{r\})=\beta_{A_{k}}$ and $m^{\mathcal{H}}\left[A_{k}\right](\mathcal{H})=\alpha_{A_{k}}$.
- Example 1 (mercury thermometer): $\beta_{A_{1}}=1, \beta_{A_{2}}=0$.

Contextual discounting based on a coarsening

Model

- Let \mathcal{A} be a partition of \mathcal{X} representing different contexts
- Example 1 (mercury thermometer): $\mathcal{A}=\left\{A_{1}, A_{2}\right\}$ with $A_{1}=\left\{-38^{\circ} \mathrm{C}, \ldots, 356^{\circ} \mathrm{C}\right\}$ and $A_{2}=\overline{A_{1}}$.
- The source can be in two states: reliable (r) or not $(\neg r), \mathcal{H}=\{r, \neg r\}$, $m^{\mathcal{X}}[\{r\}]=m_{S}^{\mathcal{X}}, m^{\mathcal{X}}[\{\neg r\}]=m_{\mathcal{X}}$.
- For all contexts $A_{k} \in \mathcal{A}: m^{\mathcal{H}}\left[A_{k}\right](\{r\})=\beta_{A_{k}}$ and $m^{\mathcal{H}}\left[A_{k}\right](\mathcal{H})=\alpha_{A_{k}}$.
- Example 1 (mercury thermometer): $\beta_{A_{1}}=1, \beta_{A_{2}}=0$.
- If $\mathcal{A}=\{\mathcal{X}\}$ we retrieve the discounting model:
- $m^{\mathcal{H}}[\mathcal{X}](\{r\})=m^{\mathcal{H}}(\{r\})=\beta$
- $m^{\mathcal{H}}[\mathcal{X}](\mathcal{H})=m^{\mathcal{H}}(\mathcal{H})=\alpha$.

Contextual discounting based on a coarsening

Derivation

- Available evidence can be synthesized by:

$$
\left(m^{\mathcal{X}}[\{r\}]^{\Uparrow \mathcal{X} \times \mathcal{H}} \odot_{A_{k} \in \mathcal{A}} m^{\mathcal{H}}\left[A_{k}\right]^{\Uparrow \mathcal{X} \times \mathcal{H}}\right)^{\downarrow \mathcal{X}}
$$

Contextual discounting based on a coarsening

Derivation

- Available evidence can be synthesized by:

$$
\left(m^{\mathcal{X}}[\{r\}]^{\Uparrow \mathcal{X} \times \mathcal{H}} \cap_{A_{k} \in \mathcal{A}} m^{\mathcal{H}}\left[A_{k}\right]^{\Uparrow \mathcal{X} \times \mathcal{H}}\right)^{\downarrow \mathcal{X}}
$$

- Result is given by:

$$
m_{S}(())_{A \in \mathcal{A}} A_{\beta_{A}}
$$

- Discounting is retrieved when $\mathcal{A}=\{\mathcal{X}\}$ (\mathcal{A} contains one context \mathcal{X}):

$$
m_{S}\left(() \mathcal{X}_{\beta}\right.
$$

Contextual discounting based on a coarsening

Results in terms of masses transfers

For each focal element B of m_{S}, for each context $A \in \mathcal{A}$:

- A portion $\beta_{A} \cdot m_{S}(B)$ remains on B.
- A portion $\left(1-\beta_{A}\right) \cdot m_{S}(B)$ is transferred to $B \cup A$.

Contextual discounting based on a coarsening

Example

With $\mathcal{X}=\left\{x_{1}, x_{2}, x_{3}\right\}, \mathcal{A}=\left\{\left\{x_{1}\right\},\left\{x_{2}\right\},\left\{x_{3}\right\}\right\}$, generalisation matrix associated with $m \backsim\left(x_{1}\right\}_{\beta_{1}} \circlearrowleft\left\{x_{2}\right\}_{\beta_{2}} \circlearrowleft\left\{x_{3}\right\}_{\beta_{3}}$ is given by:

$$
\left(\begin{array}{cccccccc}
\beta_{1} \beta_{2} \beta_{3} & & & & & & & \\
\alpha_{1} \beta_{2} \beta_{3} & \beta_{2} \beta_{3} & & & & & & \\
\beta_{1} \alpha_{2} \beta_{3} & & \beta_{1} \beta_{3} & & & & & \\
\alpha_{1} \alpha_{2} \beta_{3} & \alpha_{2} \beta_{3} & \alpha_{1} \beta_{3} & \beta_{3} & & & & \\
\beta_{1} \beta_{2} \alpha_{3} & & & & \beta_{1} \beta_{2} & & & \\
\alpha_{1} \beta_{2} \alpha_{3} & \beta_{2} \alpha_{3} & & & \alpha_{1} \beta_{2} & \beta_{2} & & \\
\beta_{1} \alpha_{2} \alpha_{3} & & \beta_{1} \alpha_{3} & & \beta_{1} \alpha_{2} & & \beta_{1} & \\
\alpha_{1} \alpha_{2} \alpha_{3} & \alpha_{2} \alpha_{3} & \alpha_{1} \alpha_{3} & \alpha_{3} & \alpha_{1} \alpha_{2} & \alpha_{2} & \alpha_{1} & 1
\end{array}\right)\left\{\begin{array}{c}
\emptyset \\
\left\{x_{1}\right\} \\
\left\{x_{2}\right\} \\
\left\{x_{1}, x_{2}\right\} \\
\left\{x_{3}\right\} \\
\left\{x_{1}, x_{3}\right\} \\
\left\{x_{2}, x_{3}\right\} \\
\left\{x_{1}, x_{2}, x_{3}\right\}
\end{array}\right.
$$

Outline

Discounting

Contextual discounting based on a coarsening

Behaviour Based Correction (BBC)

Contextual discounting (CD), reinforcement (CR) and negating (CN)

Learning CD, CR and CN from labelled data

Behaviour Based Correction (BBC)

Model (Pichon et al., 2012)

- A source provides a MF $\mathrm{m}^{\mathcal{Y}}$,

Behaviour Based Correction (BBC)

Model (Pichon et al., 2012)

- A source provides a MF $m^{\mathcal{Y}}$,
- The state (or configuration) h in which stands the source, is described by a MF $m^{\mathcal{H}}$,

4

Behaviour Based Correction (BBC)

Model (Pichon et al., 2012)

- A source provides a MF $m^{\mathcal{Y}}$,
- The state (or configuration) h in which stands the source, is described by a MF $m^{\mathcal{H}}$,
- For all $A \subseteq \mathcal{Y}$ a function Γ_{A} defined from \mathcal{H} to $2^{\mathcal{X}}$ (Γ_{A} is a multi-valued mapping) indicates how to interpret the piece of information $y \in A \subseteq \mathcal{Y}$ for each state $h \in \mathcal{H}$.

Behaviour Based Correction (BBC)

Examples

- Consider a thermometer that can be:
- reliable: what it outputs is correct.
- approx. (approximately reliable): if it provides a temperature t, the true one is in $\{t-1, t, t+1\}$.
- unreliable: what it outputs is incorrect.
- Model:
- $\mathcal{Y}=\mathcal{X}$ the set of temperatures,
- $\mathcal{H}=\{$ reliable, approx, unreliable $\}$,
- and Γ_{A} is defined for all $A \subseteq \mathcal{X}$ by:

$$
\begin{array}{ll}
\Gamma_{A}(\text { reliable }) & =A, \\
\Gamma_{A} \text { (approx) } & =A \cup_{t \in A}\{t-1, t+1\}, \\
\Gamma_{A}(\text { unreliable }) & =\mathcal{X} .
\end{array}
$$

Celsius Fahrenheit

$100^{\circ} \mathrm{C}$
$90^{\circ} \mathrm{C}$
$80^{\circ} \mathrm{C}$
$70^{\circ} \mathrm{C}$
$60^{\circ} \mathrm{C}$
$50^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}-$
$30^{\circ} \mathrm{C}$
$20^{\circ} \mathrm{C}$
$10^{\circ} \mathrm{C}$

$0^{\circ} \mathrm{C}$$\quad$| $2122^{\circ} \mathrm{F}$ |
| ---: |
| $-192^{\circ} \mathrm{F}$ |
| $-172^{\circ} \mathrm{F}$ |
| $-152^{\circ} \mathrm{F}$ |
| $-132^{\circ} \mathrm{F}$ |
| $-112^{\circ} \mathrm{F}$ |
| $-92^{\circ} \mathrm{F}$ |
| $-72^{\circ} \mathrm{F}$ |
| $-52^{\circ} \mathrm{F}$ |
| $-32^{\circ} \mathrm{F}$ |

Behaviour Based Correction (BBC)

Derivation

1. A source provides a MF $m^{\mathcal{Y}}$,
2. The state (or configuration) h in which stands the source, is described by a MF $m^{\mathcal{H}}$,
3. For all $A \subseteq \mathcal{Y}$ a function Γ_{A} defined from \mathcal{H} to $2^{\mathcal{X}}\left(\Gamma_{A}\right.$ is a multi-valued mapping) indicates how to interpret the piece of information $y \in A \subseteq \mathcal{Y}$ for each state $h \in \mathcal{H}$.

Behaviour Based Correction (BBC)

Derivation

1. A source provides a MF $m^{\mathcal{Y}}$,
2. The state (or configuration) h in which stands the source, is described by a MF $m^{\mathcal{H}}$,
3. For all $A \subseteq \mathcal{Y}$ a function Γ_{A} defined from \mathcal{H} to $2^{\mathcal{X}}\left(\Gamma_{A}\right.$ is a multi-valued mapping) indicates how to interpret the piece of information $y \in A \subseteq \mathcal{Y}$ for each state $h \in \mathcal{H}$.

- The 3 rd piece of evidence defines a relation between $\mathcal{H}, \mathcal{Z}=2^{\mathcal{Y}}$ and \mathcal{X}, which can be represented by the following logical MF:

$$
m_{\Gamma}^{\mathcal{H} \times \mathcal{Z} \times \mathcal{X}}\left(\cup_{h \in \mathcal{H}, z_{A} \in \mathcal{Z}}\{h\} \times z_{A} \times \Gamma_{z_{A}}(h)\right)=1
$$

with $\Gamma_{z_{A}}(h)=\Gamma_{A}(h)$ for all $h \in \mathcal{H}$ and $A \subseteq \mathcal{Y}$.

Behaviour Based Correction (BBC)

Derivation

1. A source provides a MF $m^{\mathcal{Y}}$,
2. The state (or configuration) h in which stands the source, is described by a MF $m^{\mathcal{H}}$,
3. For all $A \subseteq \mathcal{Y}$ a function Γ_{A} defined from \mathcal{H} to $2^{\mathcal{X}}\left(\Gamma_{A}\right.$ is a multi-valued mapping) indicates how to interpret the piece of information $y \in A \subseteq \mathcal{Y}$ for each state $h \in \mathcal{H}$.

- The 3rd piece of evidence defines a relation between $\mathcal{H}, \mathcal{Z}=2^{\mathcal{Y}}$ and \mathcal{X}, which can be represented by the following logical MF:

$$
m_{\Gamma}^{\mathcal{H} \times \mathcal{Z} \times \mathcal{X}}\left(\cup_{h \in \mathcal{H}, z_{A} \in \mathcal{Z}}\{h\} \times z_{A} \times \Gamma_{z_{A}}(h)\right)=1
$$

with $\Gamma_{z_{A}}(h)=\Gamma_{A}(h)$ for all $h \in \mathcal{H}$ and $A \subseteq \mathcal{Y}$.

- The 1st piece of evidence is a Bayesian MF s.t. $m^{\mathcal{Z}}\left(\left\{z_{A}\right\}\right)=m^{\mathcal{Y}}(A)$ for all $A \subseteq \mathcal{Y}$.

Behaviour Based Correction (BBC)

Derivation (continued) and Expression

- To have the information on \mathcal{X}, pieces of information $m^{\mathcal{Z}}, m^{\mathcal{H}},\left\{\Gamma_{z_{A}}, A \subseteq \mathcal{Y}\right\}$ $=m^{\mathcal{Z}}, m^{\mathcal{H}}, m_{\Gamma}^{\mathcal{H} \times \mathcal{Z} \times \mathcal{X}}$ are combined as follows

$$
\left(\left(m^{\mathcal{Z} \uparrow \mathcal{H} \times \mathcal{Z} \times \mathcal{X}} \odot m_{\Gamma}^{\mathcal{H} \times \mathcal{Z} \times \mathcal{X}}\right)^{\downarrow \mathcal{H} \times \mathcal{X}} \odot m^{\mathcal{H} \uparrow \mathcal{H} \times \mathcal{X}}\right)^{\downarrow \mathcal{X}} .
$$

Behaviour Based Correction (BBC)

Derivation (continued) and Expression

- To have the information on \mathcal{X}, pieces of information $m^{\mathcal{Z}}, m^{\mathcal{H}},\left\{\Gamma_{z_{A}}, A \subseteq \mathcal{Y}\right\}$ $=m^{\mathcal{Z}}, m^{\mathcal{H}}, m_{\Gamma}^{\mathcal{H} \times \mathcal{Z} \times \mathcal{X}}$ are combined as follows

$$
\left(\left(m^{\mathcal{Z} \uparrow \mathcal{H} \times \mathcal{Z} \times \mathcal{X}} @ m_{\Gamma}^{\mathcal{H} \times \mathcal{Z} \times \mathcal{X}}\right)^{\downarrow \mathcal{H} \times \mathcal{X}} @ m^{\mathcal{H} \uparrow \mathcal{H} \times \mathcal{X}}\right)^{\downarrow \mathcal{X}}
$$

- Result, called BBC and denoted by $f_{m^{\mathcal{H}}}\left(m^{\mathcal{V}}\right)$, is given by

$$
f_{m^{\mathcal{H}}}\left(m^{\mathcal{Y}}\right)(B)=\sum_{H \subseteq \mathcal{H}} m^{\mathcal{H}}(H) \sum_{A: \Gamma_{A}(H)=B} m^{\mathcal{Y}}(A),
$$

for all $B \subseteq \mathcal{X}$, with $\Gamma_{A}(H)=\cup_{h \in H} \Gamma_{A}(h)$.

Behaviour Based Correction (BBC)

Derivation (continued) and Expression

- To have the information on \mathcal{X}, pieces of information $m^{\mathcal{Z}}, m^{\mathcal{H}},\left\{\Gamma_{z_{A}}, A \subseteq \mathcal{Y}\right\}$ $=m^{\mathcal{Z}}, m^{\mathcal{H}}, m_{\Gamma}^{\mathcal{H} \times \mathcal{Z} \times \mathcal{X}}$ are combined as follows

$$
\left(\left(m^{\mathcal{Z} \uparrow \mathcal{H} \times \mathcal{Z} \times \mathcal{X}} @ m_{\Gamma}^{\mathcal{H} \times \mathcal{Z} \times \mathcal{X}}\right)^{\downarrow \mathcal{H} \times \mathcal{X}} \cap m^{\mathcal{H} \uparrow \mathcal{H} \times \mathcal{X}}\right)^{\downarrow \mathcal{X}}
$$

- Result, called BBC and denoted by $f_{m^{\mathcal{H}}}\left(m^{\mathcal{Y}}\right)$, is given by

$$
f_{m^{\mathcal{H}}}\left(m^{\mathcal{Y}}\right)(B)=\sum_{H \subseteq \mathcal{H}} m^{\mathcal{H}}(H) \sum_{A: \Gamma_{A}(H)=B} m^{\mathcal{Y}}(A),
$$

for all $B \subseteq \mathcal{X}$, with $\Gamma_{A}(H)=\cup_{h \in H} \Gamma_{A}(h)$.

- Exercise: Build the equivalent VBS (cf previous Lecture 9 of P. Shenoy) to derive the BBC.

14

Behaviour Based Correction (BBC)

Example 1: Discounting is retrieved

- Model:
- $\mathcal{Y}=\mathcal{X}, m^{\mathcal{Y}}=m_{S}^{\mathcal{X}}$
- $\mathcal{H}=\{$ reliable, unreliable $\}$, s.t. Γ_{A} is defined $\forall A \subseteq \mathcal{X}$ by:

$$
\begin{array}{ll}
\Gamma_{A}(\text { reliable }) & =A, \\
\Gamma_{A}(\text { unreliable }) & =\mathcal{X} .
\end{array}
$$

- $m^{\mathcal{H}}$ defined, with $\alpha \in[0,1]$, by:

$$
\begin{aligned}
& m^{\mathcal{H}}(\{\text { reliable }\})=\beta=1-\alpha, \\
& m^{\mathcal{H}}(\{\text { unreliable }\})=\alpha .
\end{aligned}
$$

- Gives: $\boldsymbol{f}_{m^{\mathcal{H}}}\left(m_{S}^{\mathcal{X}}\right)=\beta m_{S}^{\mathcal{X}}+\alpha m_{\mathcal{X}}^{\mathcal{X}}$.

Behaviour Based Correction (BBC)

Example 2: Reinforcement of the mass of an element x_{i} of \mathcal{X}

- Model:
- $\mathcal{Y}=\mathcal{X}, m^{\mathcal{Y}}=m_{S}^{\mathcal{X}}=m$
- $\mathcal{H}=\left\{\right.$ reliable, reinf. of $\left.x_{i}\right\}$, s.t. Γ_{A} is defined $\forall A \subseteq \mathcal{X}$ by:

$$
\begin{array}{ll}
\Gamma_{A}(\text { reliable }) & =A, \\
\Gamma_{A}\left(\text { reinf. of } x_{i}\right) & =x_{i} .
\end{array}
$$

- $m^{\mathcal{H}}$ defined, with $\alpha \in[0,1]$, by:

$$
\begin{array}{ll}
m^{\mathcal{H}}(\{\text { reliable }\}) & =\beta=1-\alpha, \\
m^{\mathcal{H}}\left(\left\{\text { reinf. of } x_{i}\right\}\right) & =\alpha .
\end{array}
$$

- Gives: $f_{m^{\mathcal{H}}}(m)=\beta m+\alpha m_{x_{i}}$, with $m_{x_{i}}\left(x_{i}\right)=1$.

Behaviour Based Correction (BBC)

- Vehicles exchange messages about events happening on the road.
- Information about each event \mathbf{e} is represented in each message by a MF $m^{\mathcal{X}}$ with $\mathcal{X}=\{\exists$, 抽 and
- \exists meaning "event e exists",
- \#meaning "event e does not exist".

Behaviour Based Correction (BBC)

Example 2 applied to VANETs (Bou Farah et al. 2016)

Two strategies for modelling messages ageings about accidents on the road:

Behaviour Based Correction (BBC)

Example 2 applied to VANETs (Bou Farah et al. 2016)

Two strategies for modelling messages ageings about accidents on the road:

1. Either discount MFs $m^{\mathcal{X}}:(1-\alpha) m^{X}+\alpha m_{\mathcal{X}}$, with $\alpha \in[0,1]$ (over time, we do not know if the event is present or not).

Behaviour Based Correction (BBC)

Example 2 applied to VANETs (Bou Farah et al. 2016)

Two strategies for modelling messages ageings about accidents on the road:

1. Either discount MFs $m^{\mathcal{X}}:(1-\alpha) m^{X}+\alpha m_{\mathcal{X}}$, with $\alpha \in[0,1]$ (over time, we do not know if the event is present or not).

2. Or use the following mechanisms $(1-\alpha) m^{X}+\alpha m_{\{\nexists\}}$, with $\alpha \in[0,1]$ (over time we think the event is going to disappear).

Behaviour Based Correction (BBC)
 Example 2 applied to VANETs (Bou Farah et al. 2016)

Two strategies for modelling messages ageings about accidents on the road:

1. Either discount MFs $m^{\mathcal{X}}:(1-\alpha) m^{X}+\alpha m_{\mathcal{X}}$, with $\alpha \in[0,1]$ (over time, we do not know if the event is present or not).

2. Or use the following mechanisms $(1-\alpha) m^{X}+\alpha m_{\{\nexists\}}$, with $\alpha \in[0,1]$ (over time we think the event is going to disappear).

\Rightarrow Experiments made show that the second strategy yields a better adequacy to the reality.

Outline

Discounting

Contextual discounting based on a coarsening

Behaviour Based Correction (BBC)

Contextual discounting (CD), reinforcement (CR) and negating (CN)

Learning CD, CR and CN from labelled data

$C D, C R$ and $C N$

Relevance and truthfulness: refinements of the notion of reliability (Pichon et al. 2012)

- Reliability is not limited to relevance.
- Reliability is not limited to relevance.
- Truthfulness: another dimension.
- If a source is truthful, it gives the information it has.
- If a source is not truthful (intentionally or not), it declares the contrary of what it knows. (crudest form)

$C D, C R$ and $C N$

Example of a model with 2 dimensions

- $\mathcal{H}=\{(R, T),(R, \neg T),(\neg R, T),(\neg R, \neg T)\}$ with R meaning relevant and T truthful.

$C D, C R$ and $C N$

Example of a model with 2 dimensions

- $\mathcal{H}=\{(R, T),(R, \neg T),(\neg R, T),(\neg R, \neg T)\}$ with R meaning relevant and T truthful.
- Multi-valued mapping Γ_{A} interpreted states in \mathcal{H} defined $\forall A \subseteq \mathcal{X}$ by:

$$
\begin{array}{ll}
\Gamma_{A}(R, T) & =A \\
\Gamma_{A}(R, \neg T) & =\bar{A} \\
\Gamma_{A}(\neg R, T) & =\Gamma_{A}(\neg R, \neg T)=\mathcal{X} .
\end{array}
$$

$C D, C R$ and $C N$

Example of a model with 2 dimensions

- $\mathcal{H}=\{(R, T),(R, \neg T),(\neg R, T),(\neg R, \neg T)\}$ with R meaning relevant and T truthful.
- Multi-valued mapping Γ_{A} interpreted states in \mathcal{H} defined $\forall A \subseteq \mathcal{X}$ by:

$$
\begin{aligned}
\Gamma_{A}(R, T) & =A \\
\Gamma_{A}(R, \neg T) & =\bar{A}, \\
\Gamma_{A}(\neg R, T) & =\Gamma_{A}(\neg R, \neg T)=\mathcal{X} .
\end{aligned}
$$

- $m^{\mathcal{H}}$ defined, with $\alpha \in[0,1], \operatorname{Prob}(R)=p$ and $\operatorname{Prob}(T)=q$, by:

$$
\begin{array}{ll}
m^{\mathcal{H}}(\{R, T\}) & =p q \\
m^{\mathcal{H}}(\{R, \neg T\}) & =p(1-q) \\
m^{\mathcal{H}}(\{\neg R, T\}) & =(1-p) q \\
m^{\mathcal{H}}(\{\neg R, \neg T\}) & =(1-p)(1-q)
\end{array}
$$

$C D, C R$ and $C N$

Example of a model with 2 dimensions

- $\mathcal{H}=\{(R, T),(R, \neg T),(\neg R, T),(\neg R, \neg T)\}$ with R meaning relevant and T truthful.
- Multi-valued mapping Γ_{A} interpreted states in \mathcal{H} defined $\forall A \subseteq \mathcal{X}$ by:

$$
\begin{array}{ll}
\Gamma_{A}(R, T) & =A \\
\Gamma_{A}(R, \neg T) & =\bar{A} \\
\Gamma_{A}(\neg R, T) & =\Gamma_{A}(\neg R, \neg T)=\mathcal{X}
\end{array}
$$

- $m^{\mathcal{H}}$ defined, with $\alpha \in[0,1], \operatorname{Prob}(R)=p$ and $\operatorname{Prob}(T)=q$, by:

$$
\begin{array}{ll}
m^{\mathcal{H}}(\{R, T\}) & =p q \\
m^{\mathcal{H}}(\{R, \neg T\}) & =p(1-q) \\
m^{\mathcal{H}}(\{\neg R, T\}) & =(1-p) q \\
m^{\mathcal{H}}(\{\neg R, \neg T\}) & =(1-p)(1-q)
\end{array}
$$

\therefore BBC gives $f_{m^{\mathcal{H}}}\left(m_{S}^{\mathcal{X}}\right)=p q m_{S}^{\mathcal{X}}+p(1-q) \bar{m}_{S}^{\mathcal{X}}+(1-p) m_{\mathcal{X}}^{\mathcal{X}}$.

- $\neg T$ corresponds to the assumption that the source is non truthful for all values x_{i} of \mathcal{X}.
- $\neg T$ corresponds to the assumption that the source is non truthful for all values x_{i} of \mathcal{X}.
- More subtle form of lack of truthfulness:
- The source is non truthful for some values x_{i} of \mathcal{X} and truthful for the other values of \mathcal{X} (kind of contextual lack of truthfulness).
- $\neg T$ corresponds to the assumption that the source is non truthful for all values x_{i} of \mathcal{X}.
- More subtle form of lack of truthfulness:
- The source is non truthful for some values x_{i} of \mathcal{X} and truthful for the other values of \mathcal{X} (kind of contextual lack of truthfulness).
- Let us denote by t_{A} with $A \subseteq \mathcal{X}$ the state s.t.
- Source is truthful for the values in A
- Source is untruthful for the values in \bar{A}
- $\neg T$ corresponds to the assumption that the source is non truthful for all values x_{i} of \mathcal{X}.
- More subtle form of lack of truthfulness:
- The source is non truthful for some values x_{i} of \mathcal{X} and truthful for the other values of \mathcal{X} (kind of contextual lack of truthfulness).
- Let us denote by t_{A} with $A \subseteq \mathcal{X}$ the state s.t.
- Source is truthful for the values in A
- Source is untruthful for the values in \bar{A}
- Examples:
- State T corresponds to state $t_{\mathcal{X}}$.
- State $\neg T$ corresponds to state $t_{\text {p }}$.
- Suppose
- Source indicates $x \in B \subseteq \mathcal{X}$
- Source is in state t_{A} (truthful for the values in A, untruthful for the values in \bar{A})
- What can we conclude for x ?
- Suppose
- Source indicates $x \in B \subseteq \mathcal{X}$
- Source is in state t_{A} (truthful for the values in A, untruthful for the values in \bar{A})
- What can we conclude for x ?

- Suppose
- Source indicates $x \in B \subseteq \mathcal{X}$
- Source is in state t_{A} (truthful for the values in A, untruthful for the values in \bar{A})
- What can we conclude for x ?

- Suppose
- Source indicates $x \in B \subseteq \mathcal{X}$
- Source is in state t_{A} (truthful for the values in A, untruthful for the values in \bar{A})
- What can we conclude for x ?

- Suppose
- Source indicates $x \in B \subseteq \mathcal{X}$
- Source is in state t_{A} (truthful for the values in A, untruthful for the values in \bar{A})
- What can we conclude for x ?

$C D, C R$ and $C N$

- Suppose
- Source indicates $x \in B \subseteq \mathcal{X}$
- Source is in state t_{A} (truthful for the values in A, untruthful for the values in \bar{A})
- What can we conclude for x ? $x \in(B \cap A) \cup(\bar{B} \cap \bar{A})=B \cap A$

$C D, C R$ and $C N$

Contextual Negating: derivation from a composition of indep. BBCs (Pichon et al. 2016)

- With:
- $\mathcal{H}=\left\{t_{A} \mid A \subseteq \mathcal{X}\right\}$ s.t. $\forall B \subseteq \mathcal{X} \Gamma_{B}\left(t_{A}\right)=B \cap A$ (in particular $\left.\Gamma_{B}\left(t_{\mathcal{X}}\right)=B\right)$
- A set \mathcal{A} of contexts s.t. $\forall A \in \mathcal{A}, \mathrm{MF} m_{A, \bigcap}^{\mathcal{H}}$ is defined by:

$$
\begin{aligned}
& \left.m_{A, \cap}^{\mathcal{H}}\left(\left\{t_{\mathcal{X}}\right\}\right)=\beta_{A} \quad \text { (The source is truthful with a degree } \beta_{A}\right) \\
& \left.m_{A, \underline{\prime},}^{\mathcal{H}}\left(\left\{t_{A}\right\}\right)=\alpha_{A} \quad \text { (and untruthful in } \bar{A} \text { with a degree } 1-\beta_{A}\right)
\end{aligned}
$$

where $\alpha_{A} \in[0,1], \beta_{A}=1-\alpha_{A}$.

UNIVERSITÉ D'ARTOIS

$C D, C R$ and $C N$

Contextual Negating: derivation from a composition of indep. BBCs (Pichon et al. 2016)

- With:
- $\mathcal{H}=\left\{t_{A} \mid A \subseteq \mathcal{X}\right\}$ s.t. $\forall B \subseteq \mathcal{X} \Gamma_{B}\left(t_{A}\right)=B \cap A$ (in particular $\left.\Gamma_{B}\left(t_{\mathcal{X}}\right)=B\right)$
- A set \mathcal{A} of contexts s.t. $\forall A \in \mathcal{A}, \mathrm{MF} m_{A, \underline{\unrhd}}^{\mathcal{H}}$ is defined by:

$$
\begin{aligned}
& \left.m_{A, \cap}^{\mathcal{H}}\left(\left\{t_{\mathcal{X}}\right\}\right)=\beta_{A} \quad \text { (The source is truthful with a degree } \beta_{A}\right) \\
& \left.m_{A, \underline{\prime},}^{\mathcal{H}}\left(\left\{t_{A}\right\}\right)=\alpha_{A} \quad \text { (and untruthful in } \bar{A} \text { with a degree } 1-\beta_{A}\right)
\end{aligned}
$$

where $\alpha_{A} \in[0,1], \beta_{A}=1-\alpha_{A}$.

- We obtain (CN definition):

$$
\begin{aligned}
\left(\circ_{A \in \mathcal{A}} f_{m_{A, \varrho}^{\mathcal{H}}}\right)\left(m_{S}^{\mathcal{X}}\right) & =m_{S}^{\mathcal{X}} @_{A \in \mathcal{A}} A^{\beta_{A}} \\
& =m_{S}^{\mathcal{X}} @_{A \in \mathcal{A}}\left\{\begin{array}{l}
\mathcal{X} \\
A
\end{array} \beta_{A}\right.
\end{aligned} \mapsto_{A}-\beta_{A} .
$$

UNIVERSITÉ D'ARTOIS

$C D, C R$ and $C N$

- With:
- $\mathcal{A}=\{\emptyset\}$ (one context), denoted α_{\emptyset} simply by α, we have:

$$
\begin{aligned}
& m_{\emptyset, \cap}^{\mathcal{H}}\left(\left\{s_{\mathcal{X}}\right\}\right)=\beta \\
& m_{\emptyset, \underline{\cap}}^{\mathcal{H}}\left(\left\{s_{\emptyset}\right\}\right)=\alpha
\end{aligned}
$$

where $\Gamma_{B}\left(t_{\mathcal{X}}\right)=B$ (state $t_{\mathcal{X}}=$ truthful source) and $\Gamma_{B}\left(t_{\emptyset}\right)=\bar{B}$ (state $t_{\emptyset}=$ non truthful source).

- We have:

$$
f_{m_{\emptyset, \cap}^{\mathcal{H}}}\left(m_{S}^{\mathcal{X}}\right)=\beta m_{S}^{\mathcal{X}}+\alpha \overline{m_{S}^{\mathcal{X}}}
$$

where $\overline{m_{S}^{\mathcal{X}}}(B)=m_{S}^{\mathcal{X}}(\bar{B})$, pour tout $B \subseteq \mathcal{X}$.

- Example of positive clause: x_{i} is a possible value for x.
- Example of negative clause: x_{i} is not a possible value for x.

$C D, C R$ and $C N$

- Example of positive clause: x_{i} is a possible value for x.
- Example of negative clause: x_{i} is not a possible value for x.
- We can make a distinction with respect to the polarity of the assertion of the source:
- A source is said to be positively truthful (resp. untruthful) for a value x_{i} of \mathcal{X} if it declares that x_{i} is a possible value for x and knows it is (resp. it is not).
- A source is said to be negatively truthful (resp. untruthful) for a value x_{i} of \mathcal{X} if it declares that x_{i} is not a possible value for x and knows it is not (resp. it is).

$C D, C R$ and $C N$

- Example of positive clause: x_{i} is a possible value for x.
- Example of negative clause: x_{i} is not a possible value for x.
- We can make a distinction with respect to the polarity of the assertion of the source:
- A source is said to be positively truthful (resp. untruthful) for a value x_{i} of \mathcal{X} if it declares that x_{i} is a possible value for x and knows it is (resp. it is not).
- A source is said to be negatively truthful (resp. untruthful) for a value x_{i} of \mathcal{X} if it declares that x_{i} is not a possible value for x and knows it is not (resp. it is).
- $\neg T$ corresponds to assuming that a source is positively and negatively non truthful for all values x_{i} of \mathcal{X}.
- It means two strong assumptions:

1. The context (set of values) concerned by the lack of truthfulness is the entire frame \mathcal{X}.
2. Both polarities are concerned by the lack of truthfulness

- This means we can consider states corresponding to weaker assumptions on the lack of truthfulness
- This means we can consider states corresponding to weaker assumptions on the lack of truthfulness
- Two are of particular interest:

1. State p_{A} : Source truthful in A, negatively truthful and positively non truthful in \bar{A}.
2. State n_{A} : Source is positively truthful and negatively non truthful in A, truthful in \bar{A}.

$C D, C R$ and $C N$

State p_{A}

- Suppose
- Source indicates $x \in B \subseteq \mathcal{X}$
- Source is in state p_{A} (truthful in A, negatively truthful and positively non truthful in \bar{A})
- What can we conclude for x ?

$C D, C R$ and $C N$

State p_{A}

- Suppose
- Source indicates $x \in B \subseteq \mathcal{X}$
- Source is in state p_{A} (truthful in A, negatively truthful and positively non truthful in \bar{A})
- What can we conclude for x ?

$C D, C R$ and $C N$

State p_{A}

- Suppose
- Source indicates $x \in B \subseteq \mathcal{X}$
- Source is in state p_{A} (truthful in A, negatively truthful and positively non truthful in \bar{A})
- What can we conclude for x ?

$C D, C R$ and $C N$

State p_{A}

- Suppose
- Source indicates $x \in B \subseteq \mathcal{X}$
- Source is in state p_{A} (truthful in A, negatively truthful and positively non truthful in \bar{A})
- What can we conclude for x ?

$C D, C R$ and $C N$

State p_{A}

- Suppose
- Source indicates $x \in B \subseteq \mathcal{X}$
- Source is in state p_{A} (truthful in A, negatively truthful and positively non truthful in \bar{A})
- What can we conclude for x ? $x \in B \cap A$

$C D, C R$ and $C N$

Contextual Reinforcement: derivation from a composition of indep. BBCs (Pichon et al. 2016)

- With:
- $\mathcal{H}=\left\{p_{A} \mid A \subseteq \mathcal{X}\right\}$ s.t. $\forall B \subseteq \mathcal{X} \Gamma_{B}\left(p_{A}\right)=B \cap A$ (in particular $\Gamma_{B}\left(p_{\mathcal{X}}\right)=B$, state $p_{\mathcal{X}}=$ truthful source)
- A set \mathcal{A} of contexts s.t. $\forall A \in \mathcal{A}, \mathrm{MF} m_{A, \cap}^{\mathcal{H}}$ is defined by:

$$
\begin{array}{cl}
m_{A, \cap}^{\mathcal{H}}\left(\left\{p_{\mathcal{X}}\right\}\right)=\beta_{A} & \text { (The source is truthful with a degree } \left.\beta_{A}\right) \\
m_{A, \cap}^{\mathcal{H}}\left(\left\{p_{A}\right\}\right)=\alpha_{A} & \text { (and positively untruthful in } \bar{A} \text { with } \\
& \text { a degree } \left.1-\beta_{A}\right)
\end{array}
$$

where $\alpha_{A} \in[0,1], \beta_{A}=1-\alpha_{A}$.

$C D, C R$ and $C N$

Contextual Reinforcement: derivation from a composition of indep. BBCs (Pichon et al. 2016)

- With:
- $\mathcal{H}=\left\{p_{A} \mid A \subseteq \mathcal{X}\right\}$ s.t. $\forall B \subseteq \mathcal{X} \Gamma_{B}\left(p_{A}\right)=B \cap A$ (in particular $\Gamma_{B}\left(p_{\mathcal{X}}\right)=B$, state $p_{\mathcal{X}}=$ truthful source)
- A set \mathcal{A} of contexts s.t. $\forall A \in \mathcal{A}, \mathrm{MF} m_{A, \cap}^{\mathcal{H}}$ is defined by:

$$
\begin{aligned}
m_{A, \cap}^{\mathcal{H}}\left(\left\{p_{\mathcal{X}}\right\}\right)=\beta_{A} & \text { (The source is truthful with a degree } \left.\beta_{A}\right) \\
\left.m_{A, \cap}^{\mathcal{H}}\left(\left\{p_{A}\right\}\right)=\alpha_{A}\right) & \text { (and positively untruthful in } \bar{A} \text { with } \\
& \text { a degree } \left.1-\beta_{A}\right)
\end{aligned}
$$

where $\alpha_{A} \in[0,1], \beta_{A}=1-\alpha_{A}$.

- We obtain (CR definition):

$$
\begin{aligned}
\left(\circ_{A \in \mathcal{A}} f_{m_{A, \cap}^{\mathcal{H}}}\right)\left(m_{S}^{\mathcal{X}}\right) & =m_{S}^{\mathcal{X}} \cap_{A \in \mathcal{A}} A^{\beta_{A}} \\
& =m_{S}^{\mathcal{X}} \cap_{A \in \mathcal{A}}\left\{\begin{array}{l}
\mathcal{X} \mapsto \beta_{A} \\
A
\end{array}\right.
\end{aligned}
$$

$C D, C R$ and $C N$

- For each focal element B of m_{S}, for each context $A \in \mathcal{A}$:

A part $\beta_{A} \cdot m_{S}(B)$ remains on B.

A part $\alpha_{A} \cdot m_{S}(B)$ is transferred to $B \cap A$.
$\beta_{A} \cdot m_{S}(B)$

$C D, C R$ and $C N$

Contextual Reinforcement: an example

With $\mathcal{X}=\left\{x_{1}, x_{2}, x_{3}\right\}, \mathcal{A}=\left\{\left\{x_{1}\right\}\right\}$, specialisation matrix associated with $m ®\left\{x_{1}\right\}^{\beta_{1}}=m ®\left\{\begin{array}{ccc}\mathcal{X} & \mapsto & \beta_{1} \\ \left\{x_{1}\right\} & \mapsto & \alpha_{1}\end{array}\right.$ is given by:

$$
\left(\begin{array}{cccccccc}
1 & & \alpha_{1} & & \alpha_{1} & & \alpha_{1} & \\
& 1 & & \alpha_{1} & & \alpha_{1} & & \alpha_{1} \\
& & \beta_{1} & & & & & \\
& & & \beta_{1} & & & & \\
& & & & \beta_{1} & & & \\
& & & & & \beta_{1} & & \\
& & & & & & \beta_{1} & \\
& & & & & & & \beta_{1}
\end{array}\right) \begin{gathered}
\left.\emptyset x_{1}\right\} \\
\left\{x_{2}\right\} \\
\left\{x_{1}, x_{2}\right\} \\
\left\{x_{3}\right\} \\
\left\{x_{1}, x_{3}\right\} \\
\left\{x_{2}, x_{3}\right\} \\
\left\{x_{1}, x_{2}, x_{3}\right\}
\end{gathered}
$$

$C D, C R$ and $C N$

State n_{A}

- Suppose
- Source indicates $x \in B \subseteq \mathcal{X}$
- Source is in state n_{A} (positively truthful and negatively non truthful in A, truthful in \bar{A})
- What can we conclude for x ?

$C D, C R$ and $C N$

State n_{A}

- Suppose
- Source indicates $x \in B \subseteq \mathcal{X}$
- Source is in state n_{A} (positively truthful and negatively non truthful in A, truthful in \bar{A})
- What can we conclude for x ?

$C D, C R$ and $C N$

State n_{A}

- Suppose
- Source indicates $x \in B \subseteq \mathcal{X}$
- Source is in state n_{A} (positively truthful and negatively non truthful in A, truthful in \bar{A})
- What can we conclude for x ?

$C D, C R$ and $C N$

State n_{A}

- Suppose
- Source indicates $x \in B \subseteq \mathcal{X}$
- Source is in state n_{A} (positively truthful and negatively non truthful in A, truthful in \bar{A})
- What can we conclude for x ?

$C D, C R$ and $C N$

State n_{A}

- Suppose
- Source indicates $x \in B \subseteq \mathcal{X}$
- Source is in state n_{A} (positively truthful and negatively non truthful in A, truthful in \bar{A})
- What can we conclude for x ? $x \in B \cup A$

$C D, C R$ and $C N$

Contextual Discounting: derivation from a composition of indep. BBCs (Pichon et al. 2016)

- With:
- $\mathcal{H}=\left\{n_{A} \mid A \subseteq \mathcal{X}\right\}$ s.t. $\forall B \subseteq \mathcal{X}: \Gamma_{B}\left(n_{A}\right)=B \cup A$ (in particular $\Gamma_{B}\left(n_{\emptyset}\right)=B$, state $n_{\emptyset}=$ truthful source)
- A set \mathcal{A} of contexts s.t. $\forall A \in \mathcal{A}, \mathrm{MF} m_{A, \cup}^{\mathcal{H}}$ is defined by:

$$
\begin{array}{cl}
m_{A, \cup}^{\mathcal{H}}\left(\left\{n_{\emptyset}\right\}\right)=\beta_{A} & \text { (The source is truthful with a degree } \left.\beta_{A}\right) \\
m_{A, \cup}^{\mathcal{H}}\left(\left\{n_{A}\right\}\right)=\alpha_{A} \quad \text { (and negatively untruthful in } A \text { with } \\
& \text { a degree } \left.1-\beta_{A}\right)
\end{array}
$$

where $\alpha_{A} \in[0,1], \beta_{A}=1-\alpha_{A}$.

UNIVERSITÉ D'ARTOIS

$C D, C R$ and $C N$

Contextual Discounting: derivation from a composition of indep. BBCs (Pichon et al. 2016)

- With:
- $\mathcal{H}=\left\{n_{A} \mid A \subseteq \mathcal{X}\right\}$ s.t. $\forall B \subseteq \mathcal{X}: \Gamma_{B}\left(n_{A}\right)=B \cup A$ (in particular $\Gamma_{B}\left(n_{\emptyset}\right)=B$, state $n_{\emptyset}=$ truthful source)
- A set \mathcal{A} of contexts s.t. $\forall A \in \mathcal{A}, \mathrm{MF} m_{A, \cup}^{\mathcal{H}}$ is defined by:

$$
\begin{array}{cl}
m_{A, \cup}^{\mathcal{H}}\left(\left\{n_{\emptyset}\right\}\right)=\beta_{A} & \text { (The source is truthful with a degree } \left.\beta_{A}\right) \\
m_{A, \cup}^{\mathcal{H}}\left(\left\{n_{A}\right\}\right)=\alpha_{A} \quad \text { (and negatively untruthful in } A \text { with } \\
& \text { a degree } \left.1-\beta_{A}\right)
\end{array}
$$

where $\alpha_{A} \in[0,1], \beta_{A}=1-\alpha_{A}$.

- We obtain(définition de CD) :

$$
\begin{aligned}
&\left(\circ_{A \in \mathcal{A}} f_{m_{A, \cup}^{\mathcal{H}}}\right)\left(m_{S}^{\mathcal{X}}\right)=m_{S}^{\mathcal{X}}()_{A \in \mathcal{A}} A_{\beta_{A}} \\
&=m_{S}^{\mathcal{X}}()_{A \in \mathcal{A}}\left\{\begin{array}{l}
\emptyset \\
A \mapsto \beta_{A} \\
\end{array}\right. \\
&-\beta_{A}
\end{aligned} ~ .
$$

$C D, C R$ and $C N$

Contextual Discounting: an example

With $\mathcal{X}=\left\{x_{1}, x_{2}, x_{3}\right\}, \mathcal{A}=\left\{\left\{x_{1}\right\}\right\}$, generalization matrix associated with $m\left(\int\right)\left\{x_{1}\right\}_{\beta_{1}}=m \circlearrowleft\left\{\begin{array}{ccc}\emptyset & \mapsto & \beta_{1} \\ \left\{x_{1}\right\} & \mapsto & \alpha_{1}\end{array}\right.$ is given by:

$$
\left(\begin{array}{cccccccc}
\beta_{1} & & & & & & & \\
\alpha_{1} & 1 & & & & & & \\
& & \beta_{1} & & & & & \\
& & \alpha_{1} & 1 & & & & \\
& & & & \beta_{1} & & & \\
& & & & \alpha_{1} & 1 & & \\
& & & & & & \beta_{1} & \\
& & & & & & \alpha_{1} & 1
\end{array}\right) \begin{gathered}
\emptyset \\
\left\{x_{1}\right\} \\
\left\{x_{2}\right\} \\
\left\{x_{1}, x_{2}\right\} \\
\left\{x_{3}\right\} \\
\left\{x_{1}, x_{3}\right\} \\
\left\{x_{2}, x_{3}\right\} \\
\left\{x_{1}, x_{2}, x_{3}\right\}
\end{gathered}
$$

Outline

Discounting

Contextual discounting based on a coarsening

Behaviour Based Correction (BBC)

Contextual discounting (CD), reinforcement (CR) and negating (CN)

Learning CD, CR and CN from labelled data

Learning CD, CR and CN from labelled data

Method

Labelled data:

1. n objects $o_{i}, i \in\{1, \ldots, n\}$ whose ground truth is known (classes belongs to $\left.\mathcal{X}=\left\{x_{1}, \ldots, x_{K}\right\}\right)$,
2. and the MF $m_{S}\left\{o_{i}\right\}$ output by S regarding the class of each object o_{i}, Example with 4 objects $\left(o_{1}, o_{2}, o_{3}\right.$ and $\left.o_{4}\right)$ and $\mathcal{X}=\left\{x_{1}, x_{2}, x_{3}\right\}$:

	$\left\{x_{1}\right\}$	$\left\{x_{2}\right\}$	$\left\{x_{3}\right\}$	$\left\{x_{1}, x_{2}\right\}$	$\left\{x_{1}, x_{3}\right\}$	$\left\{x_{2}, x_{3}\right\}$	\mathcal{X}	Truth
$m_{S}\left\{o_{1}\right\}$	0	0	0.5	,	,	0.3	0.2	a
$m_{S}\left\{O_{2}\right\}$	0	0.5	0.2	0	0	0	0.3	h
$m_{s}\left\{0_{3}\right\}$	0	0.4	0	0	0.6	0	0	a
$m_{S}\left\{0_{4}\right\}$	0	0	0	0	0.6	0.4	0	r

Learning CD, CR and CN from labelled data

Method

Labelled data:

1. n objects $o_{i}, i \in\{1, \ldots, n\}$ whose ground truth is known (classes belongs to $\left.\mathcal{X}=\left\{x_{1}, \ldots, x_{K}\right\}\right)$,
2. and the MF $m_{S}\left\{o_{i}\right\}$ output by S regarding the class of each object o_{i}, Example with 4 objects $\left(o_{1}, o_{2}, o_{3}\right.$ and $\left.o_{4}\right)$ and $\mathcal{X}=\left\{x_{1}, x_{2}, x_{3}\right\}$:

x_{1}							$\left\{x_{2}\right\}$
$m_{S}\left\{x_{3}\right\}$	$\left\{x_{1}, x_{2}\right\}$	$\left\{x_{1}, x_{3}\right\}$	$\left\{x_{2}, x_{3}\right\}$	\mathcal{X}	Truth		
$m_{S}\left\{o_{2}\right\}$	0	0	0.5	0	0	0.3	0.2
a							
$m_{S}\left\{o_{3}\right\}$	0	0.4	0	0	0	0	0.3
$m_{S}\left\{o_{4}\right\}$	0	0	0	0	0.6	0	0
a							

With the same idea as Zouhal and Denœux 1998, Elouedi et al. 2004, we can obtain the corrections (CD, CR and CN) of m_{S} by minimising a measure of discrepancy between the beliefs and ground truth.

Learning CD, CR and CN from labelled data

Chosen measure of discrepancy

- Chosen measure of discrepancy (between the corrected source output and the ground truth):

$$
E_{p l}(\boldsymbol{\beta})=\sum_{i=1}^{n} \sum_{k=1}^{K}\left(p l\left\{o_{i}\right\}\left(\left\{x_{k}\right\}\right)-\delta_{i, k}\right)^{2}
$$

- where $p /\left\{o_{i}\right\}$: plausibility function obtained from a contextual correction of $m_{S}(C D, C R$ ou $C N)$ with a parameter $\boldsymbol{\beta} \in[0,1]^{|\mathcal{A}|}$.
- and $\delta_{i, k}=1$ if the class of o_{i} is $x_{k}, \delta_{i, k}=0$ otherwise.

Learning CD, CR and CN from labelled data

Chosen measure of discrepancy

- Chosen measure of discrepancy (between the corrected source output and the ground truth):

$$
E_{p l}(\boldsymbol{\beta})=\sum_{i=1}^{n} \sum_{k=1}^{K}\left(p l\left\{o_{i}\right\}\left(\left\{x_{k}\right\}\right)-\delta_{i, k}\right)^{2}
$$

- where $p l\left\{o_{i}\right\}$: plausibility function obtained from a contextual correction of $m_{S}(C D, C R$ ou $C N)$ with a parameter $\boldsymbol{\beta} \in[0,1]^{|\mathcal{A}|}$.
- and $\delta_{i, k}=1$ if the class of o_{i} is $x_{k}, \delta_{i, k}=0$ otherwise.
- Advantages of $E_{p l}$ measure

1. It yields to a least square optimization procedure (easy and quick to solve).
2. It allows us to have an easy understanding of $C D, C R$ and $C N$ impacts on the measure.
3. It is at least as justified as other measures.

4

Learning CD, CR and CN from labelled data

CD:

- Minimum of $\mathbf{E}_{\mathbf{p l}}$ is reached with $\boldsymbol{\beta}=\left(\beta_{\left\{x_{k}\right\}}, k \in\{1, \ldots, K\}\right)$, which means with \mathcal{A} composed of K contexts $\left\{x_{k}\right\}, k \in\{1, \ldots, K\}$.
- With this set of contexts \mathcal{A}, the plausibility on singletons after CD correction is defined for all $x \in \mathcal{X}$, with $\beta_{\{x\}} \in[0,1]$, by:

$$
p l(\{x\})=1-\left(1-p l_{S}(\{x\})\right) \beta_{\{x\}} .
$$

- With $\beta_{\{x\}}$ varying in $[0,1]$ one has for all $x \in \mathcal{X}$ (CD correction abilities):

$$
p l(\{x\}) \in\left[p l_{S}(\{x\}), 1\right] .
$$

Learning CD, CR and CN from labelled data

 CR results (Pichon et al. 2016)
CR :

- Minimum of $\mathbf{E}_{\mathbf{p l}}$ is reached with $\boldsymbol{\beta}=\left(\beta_{\overline{\left\{x_{k}\right\}}}, k \in\{1, \ldots, K\}\right)$, which means with \mathcal{A} composed of K contexts $\overline{\left\{x_{k}\right\}}, k \in\{1, \ldots, K\}$.
- With this set of contexts \mathcal{A}, the plausibility on singletons after CR correction is defined for all $x \in \mathcal{X}$, with $\beta_{\{x\}} \in[0,1]$, by:

$$
p^{\prime}(\{x\})=p_{S}(\{x\}) \beta_{\overline{\{x\}}} .
$$

- With $\beta_{\{\times\}}$varying in $[0,1]$ one has for all $x \in \mathcal{X}$ (CR correction abilities):

$$
p /(\{x\}) \in\left[0, p l_{S}(\{x\})\right] .
$$

Learning CD, CR and CN from labelled data

CN:

- Minimum of $\mathbf{E}_{\mathbf{p l}}$ is reached with $\boldsymbol{\beta}=\left(\beta_{\overline{\left\{x_{k}\right\}}}, k \in\{1, \ldots, K\}\right)$, which means with \mathcal{A} composed of K contexts $\left.\left\{x_{k}\right\}, k \in\{1, \ldots, K\}\right)$.
- With this set of contexts \mathcal{A}, the plausibility on singletons after CN correction is defined for all $x \in \mathcal{X}$, with $\beta_{\overline{\{x\}}} \in[0,1]$, by:

$$
p l(\{x\})=0.5+\left(p l_{S}(\{x\})-0.5\right)\left(2 \beta_{\overline{\{x\}}}-1\right) .
$$

- With $\beta_{\overline{\{x\}}}$ varying in $[0,1]$ one has for all $x \in \mathcal{X}$ (CN correction abilities):

$$
p l(\{x\}) \in\left[\min \left(p l_{S}(\{x\}), 1-p l_{S}(\{x\})\right), \max \left(p l_{S}(\{x\}), 1-p l_{S}(\{x\})\right)\right]
$$

Learning CD, CR and CN from labelled data

An experiment in classification: Description

- Goal: we want to correct the information output by an evidential classifier using CD, CR and CN.
- The evidential k-nearest neighbour classifier (ev-knn) introduced by Denœux (1995) is chosen with $k=3$.
- 5-class classification problem with data generated from 5 bivariate normal distributions with respective means $\mu_{x_{1}}=(0,0)$, $\mu_{x_{2}}=(2,0), \mu_{x_{3}}=(0,2), \mu_{x_{4}}=(2,2), \mu_{x_{5}}=(1,1)$ and common variance matrix

$$
\Sigma=\left[\begin{array}{cc}
1 & 0.9 \\
0.9 & 1
\end{array}\right]
$$

- 1000 instances of each class are generated
- Total amount of data $=5000$ instances.

Learning CD, CR and CN from labelled data

An experiment in classification: Illustration of the 5000 instances

4

UNIVERSITÉ D'ARTOIS

Learning CD, CR and CN from labelled data

The 5000 instances are divided into 3 parts:

- 1/3: Learning set for ev-knn.
- 1/3: Learning set for CD, CR and CN.
- $1 / 3$: Test set.

Learning CD, CR and CN from labelled data

An experiment in classification: Results for Class 1 ROC Curve

Learning CD, CR and CN from labelled data

An experiment in classification: Results for Class 2 ROC Curve

Learning CD, CR and CN from labelled data

An experiment in classification: Results for Class 3 ROC Curve

Learning CD, CR and CN from labelled data

An experiment in classification: Results for Class 4 ROC Curve

Learning CD, CR and CN from labelled data

An experiment in classification: Results for Class 5 ROC Curve

Learning CD, CR and CN from labelled data

Concluding remarks on the interest of the approach

- An unknown classifier is available (black box) with maybe low or intermediate performances.
- Example: a company buying sensors/classifiers from competitors (Mercier et al. 2009).

Learning CD, CR and CN from labelled data

Concluding remarks on the interest of the approach

- An unknown classifier is available (black box) with maybe low or intermediate performances.
- Example: a company buying sensors/classifiers from competitors (Mercier et al. 2009).

- With these learning methods from labelled data, you can:

1. improve the performances of this classifier;
2. learn automatically its characteristics (Learnt parameters from the correction have an interpretation).

Summary

- Discounting is not the unique mechanism to adjust/correct a source of information.

Summary

- Discounting is not the unique mechanism to adjust/correct a source of information.
- Numerous corrections can be built from the BBC
- Interpretations of the states of quality of the source are given using a multi-valued mapping Γ.

Summary

- Discounting is not the unique mechanism to adjust/correct a source of information.
- Numerous corrections can be built from the BBC
- Interpretations of the states of quality of the source are given using a multi-valued mapping Γ.
- Contextual corrections can be built in particular. They takes into account different possible behaviours of a source according to its outputs.
- They can be automatically learnt from labelled data.

Summary

- Discounting is not the unique mechanism to adjust/correct a source of information.
- Numerous corrections can be built from the BBC
- Interpretations of the states of quality of the source are given using a multi-valued mapping Γ.
- Contextual corrections can be built in particular. They takes into account different possible behaviours of a source according to its outputs.
- They can be automatically learnt from labelled data.
- Examples of applications with benefits from these corrections have been given.

What has not been presented

- The correction/adjustment of a group of sources.
- See Pichon et al. 2012 for consideration of joint state assumptions on sources.
- See Mercier et al. 2008 for a learning from labelled data.

What has not been presented

- The correction/adjustment of a group of sources.
- See Pichon et al. 2012 for consideration of joint state assumptions on sources.
- See Mercier et al. 2008 for a learning from labelled data.
- Calibration of a source of information which provides a confidence score in addition to its output. See Xu et al. 2016, Minary et al. 2017

References 1

[1] G. Shafer. A mathematical theory of evidence. Princeton, N.J.: Princeton University Press, 1976 (Discounting, Page 252)
[2] P. Smets. "Belief functions: the disjunctive rule of combination and the generalized bayesian theorem". In: International Journal of Approximate Reasoning 9 (1993), pp. 1-35 (First discounting justification, Section 5.7)
[3] D. Mercier, B. Quost, and T. Denœux. "Refined modeling of sensor reliability in the belief function framework using contextual discounting". In: Information Fusion 9.2 (Apr. 2008), pp. 246-258 (CD based on a coarsening)
[4] P. Smets. "The application of the matrix calculus to belief functions". In: International Journal of Approximate Reasoning 31.1-2 (2002), pp. 1-30

References 2

[5] F. Pichon, D. Dubois, and T. Denœux. "Relevance and truthfulness in information correction and fusion". In: International Journal of Approximate Reasoning 53.2 (2012), pp. 159-175 (Truthfulness, BBC)
[6] F. Pichon et al. "Proposition and learning of some belief function contextual correction mechanisms". In: International Journal of Approximate Reasoning 72 (2016), pp. 4-42 (CD, CR, CN)
[7] M. Bou Farah et al. "Methods using belief functions to manage imperfect information concerning events on the road in VANETs". In: Transportation Research Part C: Emerging Technologies 67 (2016), pp. 299-320 (Correction application example in VANETs)
[8] D. Mercier et al. "Decision fusion for postal address recognition using belief functions". In: Expert Systems with Applications 36 (3 2009), pp. 5643-5653 (Correction application example in the postal domain)

References 3

[9] P. Xu et al. "Evidential calibration of binary SVM classifiers". In: International Journal of Approximate Reasoning 72 (2016), pp. 55-70 (Calibration with belief functions)
[10] P. Minary et al. "Evidential joint calibration of binary svm classifiers using logistic regression". In: Proceedings of the 11th International Conference on Scalable Uncertainty Management, SUM 2017. Granada, Spain, Oct. 2017 (Calibration with belief functions)

Thank you for your attention.

