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Abstract. In this paper, we investigate the interest of learning a group
of evidential sources using contextual corrections, which is equivalent to
directly learning an optimized conjunctive combination instead of opti-
mizing each source individually. Several experiments on synthetic and
real UCI data demonstrates the interest of the approach.
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1 Introduction

Information fusion [1, 11] allows one, by combining different heterogeneous sources
of information, to obtain a better understanding (possibly more complete, more
precise) of the situation under evaluation.

The Dempster-Shafer theory of belief functions [18, 2, 17], being able to repre-
sent the imprecision and uncertainty of a piece of information, is an interesting
and already widely used framework for modeling a fusion scheme [9, 16]. One
classical evidential fusion scheme consists in modeling the individual outputs of
the sources as finely as possible to make independent and reliable pieces infor-
mation so that they can be combined using the conjunctive rule of combination
(meaning the unnormalized Dempster’s rule). The reliability of the outputs of
the sources can be ensured using the discounting operation [18, 15, 15] or more
refined corrections such that contextual corrections [13, 14]. For instance, we can
use the contextual discounting (CD), allowing one to weaken a piece of infor-
mation and which generalizes the discounting, or the contextual reinforcement
(CR), which can reinforce the output of a source, or the contextual negating
(CN), able to negate what a source indicates.

In the discounting operation [18], the reliability of the source, providing a
mass function m, is taken into account using a real β ∈ [0, 1] quantifying the
degree of belief in the fact that the source is reliable, and the corrected mass
function is denoted by βm. In the contextual correction mechanisms (CD, CR
and CN), the imperfection of the source, its bias in a broad sense, is modeled
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using a vector β ∈ [0, 1]C , with C ≤ 2K and K the number of elements in the
universe (more specific details can be found in [14]). The resulting corrected
mass function is also denoted by βm for simplicity.

If moreover, a learning set composed of the outputs of a source, expressed
in the form of mass functions, are available regarding the classes of n objects
oi, i ∈ {1, . . . , n} the true class (belonging to the universe) of each object being
known, then it is possible [10, 13] to find optimal parameters β, i.e., to learn the
parameters β minimizing a discrepancy measure between the corrected outputs
and the ground truths.

This classical information fusion scheme is illustrated in Figure 1.
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Fig. 1. Fusion scheme using individual corrections (Scheme 1).

Another idea, illustrated in Figure 2, consists in learning directly an opti-
mized conjunctive combination instead of optimizing each source individually.
This idea has been mentioned in [10] for the discounting operation and in [13]
for a particular CD.

In this paper, we use classifiers as sources of information, and we explore this
idea of optimizing directly the performance of the combination using possibly
different corrections among CD, CR and CN.

This paper is organized as follows. The notations and evidential concepts
used are recalled in Section 2. The learning of contextual corrections for a group
of evidential classifiers is presented in Section 3. Experiments on synthetic and
real data demonstrating the interest of the approach are exposed in Section 4.
Finally, a conclusion is given in Section 5.
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Fig. 2. Fusion scheme using global corrections (Scheme 2).

2 Belief functions: notations and concepts used

2.1 Basic concepts

Basic concepts are briefly recalled. Details of the theory can be found for example
in [18, 15, 5].

The universe Ω, a finite set, is composed of K elements ω1, . . ., ωK . We
consider a question of interest Q whose answer lies in Ω. A piece of information
regarding this answer can be represented by a mass function (MF) m defined
from 2Ω to [0, 1] verifying s.t.

∑
A⊆Ωm(A) = 1. The real m(A) represents the

part of belief allocated to the fact that the true searched value belongs to A and
nothing more. A subset A ⊆ Ω s.t. m(A) > 0 is called a focal element of m. A
categorical MF has only one focal element A ⊆ Ω and is denoted by mA. We
then have mA(A) = 1. In particular, mΩ represents the total ignorance.

A MF m is in one-to-one correspondence with a belief function Bel and a
plausibility function Pl respectively defined for all A ⊆ Ω by:

Bel(A) =
∑
∅6=B⊆A

m(B) , (1)

Pl(A) =
∑

A∩B 6=∅

m(B) = Bel(Ω)−Bel(A) (2)

with A = Ω \A.
The contour function pl corresponds to the restriction of the plausibility

function to the singletons of Ω, it is defined for all ω ∈ Ω by pl(ω) = Pl({ω}).
Two reliable and independent MFs m1 and m2 defined on the same uni-

verse Ω can be combined using the conjunctive rule of combination (CRC) (or
unnormalized Dempster’s rule) defined by

(m1 ∩©m2)(A) = m1 ∩©2(A) =
∑

B∩C=A

m1(B) ·m2(C), ∀A ⊆ Ω . (3)
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2.2 Corrections

A source providing a MF m and only reliable at a degree β = 1− α ∈ [0, 1] can
be discounted using the following operation

βm = β m+ αmΩ

=

{
A 7→ β m(A) ∀A ⊂ Ω
Ω 7→ β m(Ω) + α

(4)

The contour function associated with the discounted MF βm (4) verifies for
all ω ∈ Ω, βpl(ω) = 1− (1− pl(ω))β, with pl the contour function of m (Details
can be found for example in [15, 13, 14]).

In Table 1, we summarize the contour functions of the contextual discounting
(CD), contextual reinforcement (CR) and contextual negating (CN) of a MF m
that can be obtained by a specific choice of C = K parameters βw ∈ [0, 1], for
each contextual corrections; the reasons for limiting ourselves to C = K param-
eters and the definitions of these K parameters for each contextual corrections
can be found in [14, Section 8].

Table 1. Contour functions of each contextual correction of a MF m given for any
ω ∈ Ω. Each parameter βω may vary in [0, 1].

Corrections Contour functions

CD βpl(ω) = 1− (1− pl(ω))βω
CR βpl(ω) = pl(ω)βω
CN βpl(ω) = 0.5 + (pl(ω)− 0.5)(2βω − 1)

As recalled in the introduction, if for a source we have a learning set con-
taining its outputs, meaning MF m{oi}, regarding the classes of n objects oi,
i ∈ {1, . . . , n}, the true classes are known, we can then compute the CD, CR
and CN parameters β optimizing the following measure of discrepancy between
the corrected outputs and the true classes of the objects

Epl(β) =

n∑
i=1

K∑
k=1

(βpl{oi}({ωk})− δi,k)2 , (5)

where βpl{oi} is the contour function regarding the class of the object oi cor-
rected with a vector β = (βω ∈ [0, 1], ω ∈ Ω) and δi,k is the indicator function of
the truths of the objects oi, i ∈ {1, . . . , n}, meaning δi,k = 1 if the class of the
object oi is ωk, otherwise δi,k = 0.

The measure Epl yields, for each correction (CD, CR, and CN), a constrained
linear least-squares optimization problem which can be efficiently solved.
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3 Learning a group of evidential sources

When several sources are available, instead of learning the best correction pa-
rameters individually for each source knowing that these adjusted MFs are going
to be next combined, it is possible to directly optimize the combination of the
adjusted MFs.

With ` sources to be combined, ` vectors β1, . . . , β`, each one associated with
either CD or CR or CN, can be obtained by minimizing the following measure

Epl(β1, . . . , β`) =

n∑
i=1

K∑
k=1

(β1pl1{oi}({ωk})× . . .×β` pl`{oi}({ωk})− δi,k)2 (6)

Indeed, after the conjunctive combination, the plausibility of each singleton is
equal to the product of the plausibilities given by the ` sources to this singleton.

Optimizing (5) for each classifier or (6) is not the same thing as a classifier
can be used in a different manner if it is used alone or through a collective.

One drawback, however, of this approach, is that the optimization of (6) is
no more a linear least-squares optimization problem, it can be minimized using
a standard constrained nonlinear optimization procedure reaching to a possible
local minimum.

Another critical point concerns the number of optimizations to undertake in
each scenario. With three possible mechanisms (CD, CR and CN), which can
be applied on each source, and ` sources, we have for the first scheme using
individual corrections (cf Figure 1) 3 × ` possible corrections to test, while for
this second scheme optimizing the combination (cf Figure 2), we have 3` possible
corrections to test.

As an example, let us consider the case of two sources S1 and S2 (` = 2).
For the individual optimizations, we have for each source three optimisations
to undertake, using (5), to know what correction between CD, CR and CN to
keep for each source, and thus finally 6 optimisations in total of (5). While, for
the direct optimization of the combination using (6), we have to compare all the
possible associations of corrections for sources S1 and S2 (CD-CD, CD-CR, CD-
CN, CR-CD, CR-CR, CR-CN, CN-CD, CN-CR and CN-CN) leading then to a
richer frame of possible corrections, but with more comparisons to do, 32 = 9 in
this scenario.

In the following section, we show with several experiments both on synthetic
and real data, that this second scheme can have an interest due to its perfor-
mances.

4 Experiments

To test these schemes (individual corrections - Figure 1 - vs global correction -
Figure 2), several numerical experiments conducted on synthetic and real data
sets using two evidential classifiers are exposed in this Section.
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The first classifier is the evidential k-nearest neighbor (EkNN) [3, 6] with
k = 5. The second chosen classifier is the evidential neural networks (ENN) [4,
6] with number of prototypes np = 5.

For each data set, the following experiment was repeated 10 times:

– One half of the data (L1) is used to learn the classifier (EkNN or ENN);
– A 10-fold cross validation is then performed on the second half of the data

with 9 folds (L2) to learn the best correction, and 1 fold for testing.

The synthetic data set, illustrated in Figure 3, has been generated by mul-
tivariate normal distribution composed of 2 features, 900 objects and 3 classes
with the means µ1 = (0, 2), µ2 = (1, 3), µ3 = (2, 2) and the following covariance

matrices for each class: Σ1 = 0.1I, Σ2 = 0.5I and Σ3 =

[
0.3 −0.15
−0.15 0.3

]
, where

I is the 2× 2 identity matrix.

Fig. 3. Generated data set.

The real data sets used were taken from UCI [8]. Their descriptions can be
seen in Table 2.

The results are summed up in Table 3 using as a measure of performance
Epl (5), meaning the squared error between the contour function resulting from
the combination and the indicator function of the truths of the objects in the
test set.

It can be seen from Table 3 that the second scheme optimizing the combi-
nation reaches better performances according to Epl (5) than the first scheme
combining individual optimizations.
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Table 2. Description of the UCI data sets used [8]

Data sets #Instances #Features #Classes

Haberman 306 3 2
Iris 150 4 3

Glass 214 10 6
Ionosphere 350 34 2

Lymphography 140 18 3
Liver 345 6 2
Pima 768 8 2
Sonar 208 60 2

Transfusion 748 3 2
Vehicle 846 19 4

Vertebral 310 6 3

Table 3. Performances (Average Epl (5) values), the lower the better, obtained from
two sources (EkNN and ENN) for a conjunctive combination without correction (No
correction), for scheme 1 (best individual corrections), for scheme 2 (best parameterized
combination), for scheme 2 with only CD, only CR and only CN to highlight the interest
of possibly using multiple distinct corrections. Standard deviations are indicated in
parentheses. In bold the best performance for each data set.

Data No correction CC Scheme 1 Scheme 2 Scheme 2 only CD Scheme 2 only CR Scheme 2 only CN

Synthetic 10.953 (3.094) 11.690 (2.748) 9.496 (2.492) 9.491 (2.525) 10.961 (3.076) 10.882 (2.913)
Haberman 6.054 (2.381) 6.742 (1.664) 5.515 (1.725) 5.886 (2.096) 5.717 (2.070) 5.577 (1.849)

Iris 0.503 (0.619) 0.569 (0.608) 0.467 (0.715) 0.471 (0.712) 0.503 (0.619) 0.503 (0.619)
Glass 5.016 (1.765) 6.007 (0.778) 4.703 (1.340) 4.965 (1.737) 4.771 (1.408) 4.763 (1.267)

Ionosphere 2.411 (0.882) 2.874 (0.831) 2.057 (0.958) 2.057 (0.958) 2.411 (0.882) 2.411 (0.882)
Lympho 2.305 (1.077) 2.748 (0.929) 2.253 (1.058) 2.239 (1.045) 2.322 (1.086) 2.322 (1.059)

Liver 7.937 (1.778) 9.481 (0.942) 7.515 (1.242) 7.728 (1.564) 7.848 (1.565) 7.743 (1.405)
Pima 13.123 (2.770) 16.408 (1.970) 12.455 (2.415) 12.489 (2.490) 13.130 (2.738) 13.107 (2.681)
Sonar 3.489 (1.071) 4.365 (0.834) 3.164 (0.918) 3.160 (0.969) 3.491 (1.037) 3.492 (0.992)

Transfusion 17.018 (3.798) 16.393 (2.240) 13.218 (2.230) 15.561 (3.111) 15.096 (2.944) 13.528 (2.190)
Vehicles 23.277 (3.161) 30.886 (1.220) 21.741 (2.209) 23.106 (3.193) 22.949 (2.687) 21.851 (2.166)
Vertebral 4.632 (1.777) 5.173 (1.600) 3.979 (1.512) 3.995 (1.525) 4.645 (1.763) 4.573 (1.576)

We also wanted to highlight the possible interest of taking advantage of using
possibly several different corrections and so the performances of scheme 2 with
only CD, only CR and only CN were also exposed for comparisons. Using only
one kind of correction can limit the performances.

It can be observed that it happens that scheme 2 with only CD (Scheme
2 only CD) obtains slightly better performances (on Iris, Lympho and Sonar
data) than scheme 2 testing all combinations including CD-CD. Several non-
exclusive explanations may be given: first, the best configuration on the training
set is not necessarily the best one on the test set; second, the optimization on
the learning set is only local; and at last, the performance measure Epl (5) is
somewhat favorable to CD (Details in [14, Section 8.5.1]).

As expected, the drawback to reach these performances is a longer time to
learn the parameters as shown in Table 4. With only two sources, this time
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remains reasonable. If the number of sources were to become too large, it would
certainly be necessary to see if Scheme 2 is still applicable within a reasonable
time.

Table 4. Time consumption in seconds on a macbook Air M1 3.2 GHz 8 GB RAM
for the learning phase for Scheme 1 and Scheme 2. Standard deviations are indicated
in parentheses.

Data Scheme 1 Scheme 2

Synthetic 0.0477 (0.0116) 42.7417 (16.4333)
Haberman 0.0120 (0.0079) 11.4312 (1.3702)

Iris 0.0059 (0.0010) 5.9721 (1.1307)
Glass 0.0084 (0.0012) 18.5167 (3.9630)

Ionosphere 0.0120 (0.0020) 7.9370 (0.4878)
Lympho 0.0074 (0.0110) 6.5583 (0.7286)

Liver 0.0125 (0.0027) 13.5109 (1.0809)
Pima 0.0300 (0.0184) 22.2145 (3.2915)
Sonar 0.0070 (0.0013) 4.8880 (0.5885)

Transfusion 0.0281 (0.0078) 27.4938 (7.9787)
Vehicles 0.0596 (0.0223) 1.4006 (0.0770)
Vertebral 0.0124 (0.0017) 15.9031 (2.0436)

We now give the results according to another performance measure, and to
consider the interest of belief function modeling, we look at partial decisions
(meaning decision possibly in favor of a group of classes) [7], and we consider
that the set of possible decisions (or acts) is equal to Ω, so we can use [12][Page
6, Strong dominance criterion with 0 − 1 utilities and pieces of information
represented by belief functions] the following relation of dominance between the
singletons of Ω:

ω � ω′ ⇐⇒ Bel({ω}) ≥ Pl({ω′}) , (7)

and make a partial decision composed of the non dominated singletons according
to relation (7).

The results are then exposed in Table 5 using the u65 utility measure. This
measure, introduced by Zaffalon et al. [20], allows one to take into account the
interest of partial decisions for preferring the imprecision to being randomly
correct.

The U65 value of a partial decision d, possibly in favor a set of singletons, is
formally defined by

U65(x) = 1.6x− 0.6x2 (8)

with x the so called discounted accuracy of d defined by I(ω∈d)
|d| , with I the

indicator function, ω the true class of the instance, and |d| the number of elements
in d. The u65 utility measure gives a greater utility to imprecise but correct
partial decisions of size n (meaning decisions equal to a set of n singletons one
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of them being the true class) than precise decisions (in favor of one singleton)
only randomly correct with probability 1

n .

Table 5. Performances (Average U65 values), the higher the better, obtained from
two sources (EkNN and ENN) for a conjunctive combination without correction (No
correction), for scheme 1 (best individual corrections), for scheme 2 (best parameterized
combination), for scheme 2 with only CD, only CR and only CN to highlight the interest
of possibly using multiple distinct corrections. Standard deviations are indicated in
parentheses. In bold the best performance for each data set.

Data No correction Scheme 1 Scheme 2 Scheme 2 only CD Scheme 2 only CR Scheme 2 only CN

Synthetic 0.850 (0.052) 0.857 (0.046) 0.857 (0.046) 0.858 (0.046) 0.850 (0.052) 0.850 (0.052)
Haberman 0.755 (0.103) 0.747 (0.112) 0.758 (0.096) 0.762 ( 0.097) 0.756 (0.103) 0.759 (0.104)

Iris 0.971 (0.062) 0.971 (0.062) 0.968 (0.064) 0.969 (0.063) 0.971 (0.062) 0.971 (0.062)
Glass 0.677 (0.151) 0.679 (0.148) 0.681 (0.149) 0.684 (0.144) 0.688 (0.150) 0.683 (0.146)

Ionosphere 0.938 (0.047) 0.938 (0.046) 0.933 (0.043) 0.933 (0.043) 0.938 (0.047) 0.938 (0.047)
Lympho 0.815 (0.139) 0.805 (0.149) 0.805 (0.143) 0.806 (0.143) 0.814 (0.139) 0.815 (0.135)

Liver 0.697 (0.102) 0.684 (0.110) 0.703 (0.087) 0.704 (0.092) 0.700 (0.104) 0.698 (0.099)
Pima 0.769 (0.067) 0.767 (0.068) 0.777 (0.066) 0.775 (0.066) 0.769 (0.067) 0.771 (0.067)
Sonar 0.789 (0.132) 0.783 (0.132) 0.812 (0.096) 0.810 (0.096) 0.788 (0.135) 0.791 (0.131)

Transfusion 0.746 (0.060) 0.756 (0.064) 0.768 (0.056) 0.762 (0.053) 0.752 (0.062) 0.763 (0.057)
Vehicles 0.623 (0.062) 0.614 (0.064) 0.635 (0.058) 0.631 (0.059) 0.621 (0.063) 0.633 (0.058)
Vertebral 0.809 (0.106) 0.808 (0.104) 0.833 (0.094) 0.833 (0.093) 0.809 (0.106) 0.816 (0.105)

At last, with a classical error rate with decisions made for example by choos-
ing the class maximizing the pignistic probability [17], we obtain results very
similar with or without correction (Due to the page limit, it is difficult to put
all results). The results on this point are preliminary, we will explore other ex-
periments with surely more classifiers to see a possible interest of this approach.

5 Conclusion

In this paper, we have illustrated through experiments the interests of using
different contextual corrections to optimize the conjunctive combination of the
outputs of a group of evidential sources. We have also given elements of the
possible limitations of this strategy when the number of sources to be combined
increases, and according to classical error rate, these limitations remaining to
be more clarified. A perspective of interest and topicality will be to study the
possibility of using these schemes in an end-to-end learning of a group of deep
evidential classifiers in the lines of the works of Tong et al. for example [19].

Acknowledgements The authors would like to thank the anonymous reviewers
for their very helpful and relevant comments.



10 S. Mutmainah et al.

References

1. I. Bloch, A. Hunter, A. Appriou, A. Ayoun, S. Benferhat, L. Cholvy, R. Cooke, F.
Cuppens, D. Dubois, H.Fargier. Fusion: General concepts and characteristics. Int.
J. Intell. Syst., 16(10):11071136, 2001.

2. A.P. Dempster. Upper and lower probabilities induced by a multiple valued map-
ping. Ann. Math. Stat., 38:325–339, 1967.

3. T. Denœux. A k-nearest neighbor classification rule based on Dempster-Shafer the-
ory. IEEE Trans. Syst. Man Cybern., 25(5):804-813, 1995.

4. T. Denœux. A neural network classifier based on Dempster-Shafer theory. IEEE
Trans. Syst. Man Cybern., 30(2):131–150, 2000.

5. T. Denœux. Conjunctive and disjunctive combination of belief functions induced by
nondistinct bodies of evidence. Artif. Intell., 172:234-264, 2008.

6. T. Denœux. Evclass: Evidential distance-based classification, [https://cran.r-
project.org/web/packages/evclass/index.html], R package version 1.1.1. 2017.

7. T. Denœux. Decision-making with belief functions: A review. Int. J. of Approx.
Reason., 109:87–110, 2019.

8. D. Dua, C. Graff. UCI Machine Learning Repository [http://archive.ics.uci.edu/ml].
Irvine, CA: University of California, 2019.

9. D. Dubois, W. Liu, J. Ma, H. Prade. The basic principles of uncertain information
fusion. An organised review of merging rules in different representation frameworks.
Inf. Fusion, 32(A):12–39, 2016.

10. Z. Elouedi, K. Mellouli, P. Smets. Assessing sensor reliability for multisensor data
fusion within the transferable belief model. IEEE Trans. Syst. Man Cybern. B,
34(1):782–787, 2004.

11. L.I. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms, 2nd Edi-
tion. Wiley, Hoboken, New Jersey, United States, 2014.

12. L. Ma, T. Denœux. Partial classification in the belief function framework.
Knowledge-Based Syst., 214: article 106742, 2021.

13. D. Mercier, B. Quost, T. Denœux. Refined Modeling of Sensor Reliability in the
Belief Function Framework Using Contextual Discounting. Inf. Fusion, 9(2):246–
258, 2008.

14. F. Pichon, D. Mercier, E. Lefèvre, F. Delmotte. Proposition and learning of some
belief function contextual correction mechanisms. Int. J. Approx. Reason., 72:4-42,
2016.

15. P. Smets. Belief functions: the disjunctive rule of combination and the generalized
Bayesian theorem, Int. J. Approx. Reason., 9(1) : 1-35, 1993.

16. P. Smets. Analyzing the combination of conflicting belief functions, Inf. Fusion,
8(4):387–412, 2007.

17. P. Smets, R. Kennes. The Transferable Belief Model. Artificial Intelligence.,
66(2):191-234, 1994.

18. G. Shafer. A mathematical theory of evidence. Princeton University Press, Prince-
ton, N.J, 1976.

19. Z. Tong, P. Xu, T. Denœux. Fusion of Evidential CNN Classifiers for Image Clas-
sification. In T. Denœux, E. Lefvre, Z. Liu and F. Pichon (Eds), Belief Functions:
Theory and Applications, Springer International Publishing, pages 168-176, 2021.
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