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bConservatoire National des Arts et Métiers, EA 4629, Cedric, 75003 Paris, France.

Abstract

We propose to represent uncertainty on customer demands in the Capacitated
Vehicle Routing Problem (CVRP) using the theory of evidence. To tackle this
problem, we extend classical stochastic programming modelling approaches.
Specifically, we propose two models for this problem. The first model is an ex-
tension of the chance-constrained programming approach, which imposes certain
minimum bounds on the belief and plausibility that the sum of the demands on
each route respects the vehicle capacity. The second model extends the stochas-
tic programming with recourse approach: for each route, it represents by a belief
function the uncertainty on its recourses, i.e., corrective actions performed when
the vehicle capacity is exceeded, and defines the cost of a route as its classical
cost (without recourse) plus the worst expected cost of its recourses. We solve
the proposed models using a metaheuristic algorithm and present experimental
results on instances adapted from a well-known CVRP data set.

Keywords: Vehicle routing problem, Chance constrained programming,
Stochastic programming with recourse, Belief function.

1. Introduction

In the Capacitated Vehicle Routing Problem (CVRP), we are given a fleet of
vehicles with identical capacity located at a depot and a set of customers with
known demands located on the vertices of a graph. The goal of this problem is to
determine a route for each vehicle, such that the set of routes for all the vehicles
has the least total cost, all customer demands are fully serviced, the capacity
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of each vehicle is always respected and each customer is visited by exactly one
route. The CVRP is NP-hard since it contains the traveling salesman problem
as a particular case (one route and unbounded capacity). It can be written as
an integer linear program. The CVRP has generated a large body of research,
since it belongs to the class of local transportation or delivery problems affecting
the most expensive component in the distribution network [8].

Yet, many industrial applications are confronted with uncertainty on cus-
tomer demands in their distribution problems involving the CVRP, and the
exact customer demands are mostly revealed when the servicing vehicles arrive
at the customers. Accordingly, several authors (see, e.g., [28, 29] and the refer-
ences therein) tackled this issue by assuming that customer demands are ran-
dom variables and the associated problem is the well-known Capacitated Vehicle
Routing Problem with Stochastic Demands (CVRPSD). Two of the most widely-
used frameworks for modelling stochastic problems, such as the CVRPSD, are
the Chance-Constrained Programming (CCP) approach and the Stochastic Pro-
gramming with Recourse (SPR) approach [7]. Modelling the CVRPSD via CCP
amounts to using a probabilistic capacity constraint that requires the probabil-
ity of respecting the capacity constraint to be above a certain threshold. The
CCP modelling technique does not consider the additional cost of recourse (or
corrective) actions necessary if capacity constraints fail to be satisfied. The SPR
approach does consider situations needing recourses and it aims at minimizing
the initially-planned travel cost plus the expected cost of the recourses executed
along routes, e.g., returning to the depot and unloading in order to bring to
feasibility a violated capacity constraint.

The probabilistic approach to modelling uncertainty is not necessarily well-
suited to all real-life situations. In particular, its ability to handle epistemic un-
certainty (uncertainty arising from lack of knowledge) has been criticised [4, 1].
The typical approach to representing basic epistemic uncertainty is the set-
valued approach [26]. It is sensible when, e.g., all that is known about the
customer demands is that they belong to some intervals. This kind of uncer-
tainty in the CVRP is generally addressed using robust optimisation, where one
optimises against the worst-case scenario, that is, one wants to obtain solutions
that are robust to all realisations of customer demands that are deemed possible
(see, e.g., [49]). However, the set-valued approach to uncertainty representation
may be too coarse and may thus lead to solutions that are too conservative,
hence not useful.

In the last forty years, the necessity to account for all facets of uncertainty
has been recognized and alternative uncertainty frameworks extending both the
probabilistic and set-valued ones have appeared [4]. In particular, the theory of
evidence introduced by Shafer [47], based on some previous work from Demp-
ster [15], has emerged as a theory offering a compromise between expressivity
and complexity, which seems interesting in practice as its successful application
in several domains testifies (see [18] for a recent survey of evidence theory ap-
plications). This theory, also known as belief function theory, may be used to
model various forms of information, such as expert judgements and statistical
evidence, and it also offers tools to combine and propagate uncertainty [1].
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In the context of the CVRP, the theory of evidence may be used to rep-
resent uncertainty on customer demands leading to an optimisation problem,
which will be referred to as the CVRP with Evidential Demands (CVRPED).
Using the theory of evidence in this problem seems particularly interesting as it
allows one to account for imperfect knowledge about customer demands, such
as knowing that each customer demand belongs to one or more sets with a given
probability allocated to each set - an intermediary situation between probabilis-
tic and set-valued knowledge. In this paper, we propose to address the CVRPED
by extending the CCP and SPR modelling approaches into the formalism of ev-
idence theory. Although the focus will be to extend stochastic programming
approaches, we will also connect our formulations with robust optimisation.

To our knowledge, evidence theory has not yet been considered to model un-
certainty in large-scale instances of an NP-hard optimisation problem like the
CVRP. Indeed, it seems that so far, only other non classical uncertainty theories,
and in particular fuzzy set theory [50, 9, 42, 11], have been used in such prob-
lems. Besides, modelling uncertainty in optimisation problems using evidence
theory has concerned only continuous design optimisation problems 1 [41, 48]
and continuous linear programs [40]. Specifically in [41], the reliability of the
system is optimized, while uncertainty is handled by limiting the plausibility of
constraints violation into a small degree; while in [48] the problem was handled
differently, and the plausibility of a constraint failure was converted into a sec-
ond objective to the problem that should be minimized. Of particular interest
is the work of Masri and Ben Abdelaziz [40], who extended the CCP and SPR
modelling approaches, in order to model continuous linear programs embed-
ding belief functions, which they called the Belief Constrained Programming
(BCP) and the recourse approaches, respectively. In comparison, in this work,
we generalise CCP and SPR to an integer linear program involving uncertainty
modelled by evidence theory. Borrowing from [40], we propose to model the
CVRPED by methods that may be called the BCP modelling of the CVRPED
and the recourse modelling of the CVRPED. For both models, the resolution
algorithm is a simulated annealing algorithm; we use a metaheuristic, as the
CVRPED derives from the CVRP, which is NP-hard.

The paper is structured as follows. Section 2 summarises the basic pre-
liminaries on the CVRP and on the CVRPSD modelling via CCP and SPR,
along with the necessary background on evidence theory. In section 3, the BCP
model and the recourse model for the CVRPED are presented and some of their
properties are studied. In Section 4 we solve the BCP model and the recourse
model of the CVRPED using a simulated annealing algorithm and perform ex-
periments on instances generated from CVRP benchmarks. In Section 5, we
conclude and state the perspectives of the present work.

1Designing physical systems in the engineering field using optimisation techniques, so de-
sign costs are minimized, while the system performance is fulfilled [2].
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2. Background

This section recalls necessary background on the CVRP, the CVRPSD and
its stochastic programming formulations, as well as some concepts of belief func-
tion theory needed in this paper.

2.1. The CVRP

In the CVRP, a fleet of m identical vehicles with a given capacity limit Q,
initially located at a depot, must collect2 goods from n customers, with di such
that 0 < di ≤ Q the deterministic collect demand of client i, i = 1, . . . , n. The
objective in the CVRP is to find a set of m routes with minimum cost to serve all
the customers such that total customer demands on any route must not exceed
Q, each route starts and ends at the depot, and each customer is serviced only
once.

Formally, it is convenient to represent the depot by an artificial client i =
0, whose demand always equals 0, i.e., d0 = 0. The CVRP may be defined
on a graph G = (V,E) such that V = {0, . . . , n} is the vertex set and E =
{(i, j) |i 6= j; i, j ∈ V } is the arc set. V represents the customers and the depot
that corresponds to vertex 0. A travel cost (or travel time or distance – these
terms are interchangeable) ci,j is associated with every edge in E. Travel costs
are such that ci,j = cj,i, ∀ (i, j) ∈ E and they satisfy the triangle inequality:
ci,j ≤ ci,l + cl,j , ∀i, l, j ∈ V . Besides, ci,i = +∞, ∀i ∈ V [51]. Let Rk be the
route associated to vehicle k and wki,j a binary variable that equals 1 if vehicle
k travels from i to j and serves j (except if j is the depot), and 0 if it does not.
A proper formulation for the CVRP [8, 38] is:

min

m∑
k=1

C(Rk), (1)

where

C(Rk) =

n∑
i=0

n∑
j=0

ci,jw
k
i,j , (2)

subject to

2The problem can also be presented in terms of delivery, rather than collection, of goods.
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n∑
i=0

m∑
k=1

wki,j = 1, j = 1, . . . , n, (3)

n∑
i=0

wki,` =

n∑
j=0

wk`,j , k = 1, . . . ,m , ` = 0, . . . , n, (4)

n∑
j=1

wk0,j ≤ 1, k = 1, . . . ,m, (5)

∑
i,j∈L
i 6=j

m∑
k=1

wki,j ≤ |L]− 1, L ⊆ V \ {0}, (6)

n∑
i=1

di

n∑
j=0

wki,j ≤ Q, k = 1, . . . ,m. (7)

Constraints (3) make sure that exactly one vehicle arrives at client j, j =
1, . . . , n. Constraints (4) ensure the continuity of the routes (flow): if vehicle
k leaves vertex `, vehicle k must also enter vertex `, ensuring that the route
is a proper unbroken cycle in the graph. Constraints (5) oblige vehicle k, k =
1, . . . ,m, to leave at most one time the depot. The choices of the arcs that are
represented by wki,j is also restricted by constraints (6), that forbids subtours
solutions [8]. Without these latter constraints, we can have a vehicle performing
the path (i1, i2, . . . , it) with 0 /∈ {i1, i2, . . . , it}. Constraints (7) state that every
vehicle cannot carry more than its capacity limit. We note that constraints (3)

and (4) imply
n∑
i=0

m∑
k=1

wkj,i = 1, j = 1, . . . , n, i.e., exactly one vehicle leaves

client j. Constraints (5) and (4) imply
n∑
i=1

wki,0 ≤ 1, k = 1, . . . ,m, i.e., vehicle

k is obliged to return at most one time to the depot. Finally, we remark that
this model requires using at most m vehicles, since for some k, we might have
wki,j = 0, i, j = 1, . . . , n.

Example 1. Suppose m = 2 vehicles with capacity limit Q = 10, which must
collect the demands of n = 4 customers with demands d1 = 3, d2 = 4, d3 =
5, d4 = 6. These customers are illustrated in Figure 1a (the depot is denoted by
“0”), along with their associated travel cost matrix in Figure 1b. A candidate
solution, i.e., a set of routes satisfying constraints (3)-(7), to this problem is
shown in Figure 1c; the total travel cost (the value of the objective function
in Equation (1)) of this solution is 24.1. An optimal solution, i.e., a set of
routes satisfying constraints (3)-(7) and with minimum cost among the candidate
solutions, is provided in Figure 1d; its total travel cost is 17.8.

2.2. The CVRPSD

The CVRPSD is a variation of the CVRP, which introduces stochastic de-
mands in the CVRP, i.e., di, i = 1, . . . , n, are now random variables, such that
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d2 = 4
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d3 = 50
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d4 = 6
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d1 = 3

(a) The four clients with their demands

0 1 2 3 4
0 +∞ 3.5 3 3.1 3.5
1 3.5 +∞ 6 6.6 2.9
2 3 6 +∞ 1.8 4.4
3 3.1 6.6 1.8 +∞ 5.7
4 3.5 2.9 4.4 5.7 +∞

(b) The travel cost matrix

2

3

0

4

1
3.13.5

6.6

3
3.5

4.4

(c) A candidate solution

2

3

0

4

1
3.1

3 1.83.5

3.5

2.9

(d) An optimal solution

Figure 1: A simple CVRP

P (di ≤ Q) = 1 (these random variables are usually assumed to be independent).
The CVRPSD is typically handled using the framework of stochastic program-
ming, which models stochastic programs in two stages: an “a priori” solution
is established in the first stage, and then in the second stage the realisations of
the random variables – the actual demands in the case of the CVRPSD – are
revealed and corrective actions are carried out if necessary on the first stage
solution [28]. More precisely, the CVRPSD is either modelled as a so-called
chance-constrained program [10] or as a stochastic program with recourse [7];
these two models are detailed in the next two sections.

2.2.1. The CVRPSD modelled by CCP

Chance constrained programming consists in finding a first stage solution for
which the probability that the total demand on any route exceeds the capacity
is constrained to be below a given threshold. Formally, a CCP formulation for
the CVRPSD corresponds to the same optimisation problem described for the
CVRP in Section 2.1 except that deterministic constraints represented by (7)
are replaced by the following so called chance-constraints:

P

 n∑
i=0

di

n∑
j=0

wki,j ≤ Q

 ≥ 1− β, k = 1, . . . ,m, (8)

where 1 − β is the minimum allowable probability that any route respects ve-
hicle capacity and thus succeeds. Note that this model represents a so-called
individual chance-constrained model, since the inequality must be satisfied for
every k separately; see [45, 7] for more details.
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This model does not consider the cost of corrective actions that may be nec-
essary when the first stage solution is implemented. Indeed, when implementing
this solution, it is unlikely yet possible that the vehicle capacity is exceeded, i.e.,
route failures occur, when the actual demands are revealed and thus corrective
actions may have to be carried out in the second stage.

2.2.2. The CVRPSD modelled by SPR

Stochastic programming with recourse deals explicitly with the possibility of
a first stage solution failure, by incorporating into the objective of the problem
the penalty cost of corrective, or recourse, actions such as allowing vehicles to
return to the depot to unload. More specifically, in the SPR modelling of the
CVRPSD, the expected penalty cost of the recourse actions happening in the
second stage is considered and the problem is to find a set of routes which
has the minimal expected cost defined as the cost of the first stage solution
if no failures occur, plus the expected penalty cost of the recourse actions of
the second stage. Formally, let Ce(Rk) denote the expected cost of a route Rk
defined by

Ce(Rk) = C(Rk) + Cp(Rk), (9)

with C(Rk) the cost defined by (2) representing the cost of traveling along Rk
if no recourse action is performed, and Cp(Rk) the expected penalty cost on
Rk – Cp(Rk) may be defined in many different ways depending on the recourse
policy used (see, e.g., [12, 27, 39, 23]). Then, a SPR model for the CVRPSD
consists in modifying the CVRP model presented in Section 2.1 as follows. The
objective is to find a set of routes minimizing the sum of the expected costs of
routes Rk, i.e.,

min

m∑
k=1

Ce(Rk), (10)

subject to constraints (3)-(6) excluding constraints (5), which is replaced by

n∑
j=1

wk0,j = 1, k = 1, . . . ,m, (11)

that is exactly m vehicles must be used. Constraints (5) may be considered
instead of (11), but then the problem becomes even more difficult to solve. In
addition, note that the binary variables wki,j do not encode recourse actions:
they represent only the initially planned solution routes, i.e., the first stage
solution.

2.3. Evidence theory

In this section, basic concepts as well as some more advanced notions of
evidence theory [47], which are necessary in our study on the CVRPED, are
recalled.

7



2.3.1. Basics of evidence theory

Let x be a variable taking its values in a finite domain X = {x1, . . . , xK}.
In this theory, uncertain knowledge about x may be represented by a Mass
Function (MF) defined as a mapping mX : 2X → [0, 1] such that mX (∅) = 0
and

∑
A⊆X m

X(A) = 1. The superscript X can be omitted when there is no

risk of confusion. Each mass mX(A) represents the probability of knowing only
that x ∈ A. Subsets A ⊆ X such that mX(A) > 0 are called the focal sets of
mX . To be consistent with the stochastic case terminology, a variable x whose
true value is known in the form of a MF will be called an evidential variable.

Mass functions generalise both probabilistic and set valued representations
of uncertainty since:

• a MF whose focal sets are singletons, i.e., mX(A) > 0 iff |A| = 1, corre-
sponds to a probability mass function and is called a Bayesian MF;

• a MF having only one focal set, i.e., mX(A) = 1 for some A ⊆ X, corre-
sponds to a set and is called a categorical MF.

Another special case of mass functions are those whose focal sets are nested, in
which case they are called consonant.

Equivalent representations of a MF mX are the belief and plausibility func-
tions defined, respectively, as

BelX(x ∈ A) =
∑
C⊆A

mX(C), ∀A ⊆ X,

P lX(x ∈ A) =
∑

C∩A6=∅

mX(C), ∀A ⊆ X.

The degree of belief BelX(x ∈ A) can be interpreted as the probability that the
evidence about x and represented by mX , supports (implies) x ∈ A, whereas
the degree of plausibility PlX(x ∈ A) is the probability that the evidence is
consistent with x ∈ A. For all A ⊆ X, we have BelX(x ∈ A) ≤ PlX(x ∈ A)
and

PlX(x ∈ A) = 1−BelX(x ∈ A{), (12)

where A{ denotes the complement of A. Besides, if mX is Bayesian, then
BelX(x ∈ A) = PlX(x ∈ A), for all A ⊆ X, and this function is a probability
measure. If mX is categorical, then BelX(x ∈ A) ∈ {0, 1} and PlX(x ∈ A) ∈
{0, 1}, for all A ⊆ X, and the plausibility function restricted to the singletons
corresponds to the indicator function of the set associated to mX . If mX is
consonant, then its associated plausibility function is a possibility measure [54]:
it verifies PlX(x ∈ A ∪B) = max(PlX(x ∈ A), P lX(x ∈ B)), for all A,B ⊆ X.

Given a MF mX and a function h : X → R+, it is possible to compute
the lower expected value E∗(h,m

X) and upper expected value E∗(h,mX) of h
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relative to mX defined, respectively, as [16]

E∗(h,m
X) =

∑
A⊆X

mX(A) min
x∈A

h(x), (13)

E∗(h,mX) =
∑
A⊆X

mX(A) max
x∈A

h(x). (14)

If mX is Bayesian, then E∗(h,m
X) and E∗(h,mX) reduce to the classical (prob-

abilistic) expected value of h relative to the probability mass function mX .

2.3.2. Comparisons of belief functions

The informative content of two set-valued pieces of information x ∈ A and
x ∈ B, A,B ⊆ X, about x is naturally compared by saying that x ∈ A is
more informative than x ∈ B if A ⊂ B. An extension of this to compare the
informative content of mass functions in terms of specificity is the notion of
specialisation [24]: a MF mX

1 defined on X is said to be at least as informative
(or specific) as another MF mX

2 defined on X, which is denoted by mX
1 v mX

2 , if
and only if there exists a non-negative square matrix S = [S(A,B)], A,B ∈ 2X ,
verifying ∑

A⊆X

S(A,B) = 1, ∀B ⊆ X, (15)

S(A,B) > 0⇒ A ⊆ B, A,B ⊆ X, (16)

mX
1 (A) =

∑
B⊆X

S(A,B)mX
2 (B), ∀A ⊆ X. (17)

The term S(A,B) may be seen as the proportion of the mass mX
2 (B) which

“flows down” to A. Let us also recall that we have [24]

mX
1 v mX

2 ⇒ [BelX1 (x ∈ A), P lX1 (x ∈ A)] ⊆ [BelX2 (x ∈ A), P lX2 (x ∈ A)],∀A ⊆ X.
(18)

Assume now that an ordering has been defined among the elements of X.
By convention, assume that x1 < . . . < xK . Let Aa,a denote the subset
{xa, . . . , xa}, for 1 ≤ a ≤ a ≤ K and let I denote the set of intervals of X:
I = {Aa,a, 1 ≤ a ≤ a ≤ K}. Deciding whether an interval Aa,a, i.e. an interval-
valued piece of information x ∈ Aa,a about x, is smaller or equal to another
interval Bb,b can be done in several ways, and in particular the so-called lat-

tice ordering denoted ≤lo is defined as [20]: Aa,a ≤lo Bb,b if a ≤ b and a ≤ b.
This ordering can be extended to arbitrary subsets A and B of X as follows:
A ≤lo B if a ≤ b and a ≤ b, where a and b (resp. a and b) denote the indices
of the lowest (resp. highest) values in A and B. More generally, following the
extension above of inclusion between sets to mass functions, the ordering ≤lo
of subsets can be extended to compare mass functions in terms of ranking as
follows: a MF mX

1 is said to be at least as small as another MF mX
2 , which is
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denoted by mX
1 � mX

2 , if and only if there exists a non-negative square matrix
R = [R(A,B)], A,B ∈ 2X , verifying∑

A⊆X

R(A,B) = 1, ∀B ⊆ X, (19)

R(A,B) > 0⇒ A ≤lo B, A,B ⊆ X, (20)

mX
1 (A) =

∑
B⊆X

R(A,B)mX
2 (B), ∀A ⊆ X. (21)

In other words, the mass mX
2 (B) can be shared among smaller (according to ≤lo)

subsets than B. We note that extensions of interval rankings to belief functions
were already proposed in [17], but in the context of belief functions on the real
line and the ranking ≤lo was not considered. To our knowledge, the definition
of � appears thus to be new; it will be particularly useful in conjunction with
Proposition 1, which is somewhat of a counterpart to Eq. (18) for �, to exhibit
a property of the BCP model for the CVPRED:
Proposition 1. For any Q, 1 ≤ Q ≤ K, we have

mX
1 � mX

2 ⇒

{
BelX1 (x ∈ A1,Q) ≥ BelX2 (x ∈ A1,Q),

P lX1 (x ∈ A1,Q) ≥ PlX2 (x ∈ A1,Q).
(22)

The converse does not hold, i.e., the implication in (22) is strict.

Proof. See Appendix A.

Proposition 1 basically says that if a MF mX
1 is at least as small as a MF

mX
2 , then the belief, according to the piece of evidence mX

1 , that the value of
x is smaller or equal than a value xQ is at least as great as the belief of the
same event according to the piece of evidence mX

2 (and the same goes for the
plausibility), as may be expected from the meaning of �.

To sum up this section, mX
1 v mX

2 basically means that mX
2 represents a

less precise piece of uncertain knowledge about x than mX
1 , whereas mX

1 � mX
2

means that mX
2 represents a piece of uncertain knowledge telling that x takes a

higher value than what mX
1 tells.

2.3.3. Uncertainty propagation

Let x1, . . . , xN be N variables defined on the finite domains X1, . . . , XN ,
respectively. A MF mX1×···×XN defined on the Cartesian product X1×· · ·×XN

represent joint knowledge about the values of these variables.
Similarly as in probability theory, one can obtain joint knowledge about a

subset of the evidential variables x1, . . . , xN by marginalising MF mX1×···×XN

on the domains of these variables. For instance, and without lack of generality,
the marginalisation of mX1×···×XN on X1 × X2 is the MF mX1×···×XN↓X1×X2

on X1 ×X2 defined as, ∀A ⊆ X1 ×X2,

mX1×···×XN↓X1×X2(A) =
∑

{B⊆X1×···×XN ,B↓X1×X2=A}
mX1×···×XN (B), (23)
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where B↓X1×X2 denotes the projection of B onto X1 ×X2.
If MF mX1×···×XN satisfies, for all A ⊆ X1 × · · · ×XN ,

mX1×···×XN (A) =

{∏N
i=1m

X1×···×XN↓Xi(A↓Xi) if A = ×Ni=1A
↓Xi ,

0 otherwise,
(24)

then variables x1, . . . , xN are said to be evidentially independent (or independent
for short) [47]. In practice, this happens when joint knowledge about variables
x1, . . . , xN , is built from marginal knowledge mXi , i = 1, . . . , N , on each of these
variables, supplied by sources assumed to be independent [43], as illustrated by
Example 2 (other reasons for this to happen can also be found in [14, 13]).

Example 2. Let X1 = {x1
1, x

1
2, x

1
3} and X2 = {x2

1, x
2
2}. Furthermore, assume

two sources providing the pieces of evidence mX1 and mX2 , respectively, about x1

and x2, defined as mX1({x1
1, x

1
2}) = 0.8, mX1({x1

2, x
1
3}) = 0.2 and mX2({x2

1}) =
0.7, mX2(X2) = 0.3. Assuming that the sources are independent, we obtain

mX1×X2({x1
1, x

1
2} × {x2

1}) := mX1({x1
1, x

1
2}) ·mX2({x2

1}) = 0.56,

mX1×X2({x1
1, x

1
2} ×X2) := mX1({x1

1, x
1
2}) ·mX2(X2) = 0.24,

mX1×X2({x1
2, x

1
3} × {x2

1}) := mX1({x1
2, x

1
3}) ·mX2({x2

1}) = 0.14,

mX1×X2({x1
2, x

1
3} ×X2) := mX1({x1

2, x
1
3}) ·mX2(X2) = 0.06.

mX1×X2 clearly satisfies (24).

Furthermore, let y be a variable with finite domain Y , such that y =
f(x1, . . . , xN ) for some mapping f : X1 × · · · × XN → Y . As shown in [25],
uncertain knowledge mX1×···×XN about variables x1, . . . , xN , induces MF mY

about the value of y defined as

mY (B) =
∑

f(A)=B

mX1×···×XN (A), ∀B ⊆ Y, (25)

with f(A) = {f(x1
k1 , . . . , xNkN )|(x1

k1 , . . . , xNkN ) ∈ A} for all A ⊆ X1 × · · · ×XN .

3. Modelling the CVRPED

This section formalises and studies the CVRPED, which is an integer lin-
ear program involving uncertainty represented by belief functions. We obtain
this problem when customer demands in the CVRP are no longer determinis-
tic or random, but evidential, i.e., the variables di, i = 1, ..., n, are evidential.
Following what has been done for the case of linear programs involving eviden-
tial uncertainty [40], we may extend stochastic programming approaches to this
integer linear program embedding belief functions: the CCP modelling of the
CVRPSD is generalised into a BCP modelling of the CVRPED in Section 3.1,
and the recourse modelling of the CVRPSD is generalised into a recourse mod-
elling of the CVRPED in Section 3.2.
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Note that, to simplify the exposition, we assume actual customer demands to
be positive integers, hence the value of the demand of any customer belongs to
the set Θ = {1, 2, . . . , Q}. In addition, since the CVPRED involves n evidential
variables di, i = 1, ..., n, with respective domains Θi := Θ, i = 1, ..., n, then
formally this means that knowledge about customer demands in this problem
is represented by a MF mΘn

on Θn := ×ni=1Θi. In practical situations, it may
be the case that only marginal knowledge in the form of a MF mΘi may be
available about the individual demand of each customer i, i = 1, . . . , n. In such
case, as explained in Section 2.3.3, mΘn

can be derived by assuming that these
pieces of knowledge about individual customer demands have been provided
by independent sources. In other words, if necessary and justified, evidential
variables di, i = 1, ..., n, may be assumed to be independent, similarly as it
may be done in the stochastic case. However, let us underline that the BCP
and recourse modellings of the CVRPED proposed in the next two sections, are
general in that they do not rely on such independence assumption, i.e., they do
not need mΘn

to satisfy a property of the form (24).

3.1. The CVRPED modelled by BCP

A generalisation of the CCP modelling of the CVRPSD to the case of eviden-
tial demands is proposed in this section. The model is provided in Section 3.1.1.
Important particular cases of this model are discussed in Section 3.1.2. Influ-
ences of model parameters and of customer demand ranking on the optimal
solution cost, are studied in Sections 3.1.3 and 3.1.4, respectively.

3.1.1. Formalisation

A BCP modelling of the CVRPED amounts to keeping the same optimi-
sation problem described for the CVRP in Section 2.1 except that capacity
constraints (7) are replaced by the following belief -constraints:

Bel

 n∑
i=1

di

n∑
j=0

wki,j ≤ Q

 ≥ 1− β, k = 1, . . . ,m, (26)

Pl

 n∑
i=1

di

n∑
j=0

wki,j ≤ Q

 ≥ 1− β, k = 1, . . . ,m, (27)

with β ≥ β and where 1 − β (resp. 1 − β) is the minimum allowable degree of
belief (resp. plausibility) that a vehicle capacity is respected on any route.

Remark 1. From (12), constraints (27) are equivalent to

Bel

 n∑
i=1

di

n∑
j=0

wki,j > Q

 ≤ β, k = 1, . . . ,m. (28)

Hence, constraints (26) and (27) amount to requiring that for any route there
is a lot (at least 1− β) of support (belief) of respecting vehicle capacity and not

a lot (at most β) of support of violating vehicle capacity.

12



4

3

1

0

2

5

Figure 2: Evaluation of constraints (26) and (27) on the route (0, 4, 1, 2, 0) (route circled in
red).

Note that in order to evaluate the belief-constraints (26) and (27), the total
demand on every route must be determined by summing all customer demands
on that route. Suppose a route R having N clients, then the sum of customer
demands on R is obtained using (25), where f is the addition of integers and
where mX1×···×XN is the marginalisation of mΘn

on the domains of the eviden-
tial variables dr1, . . . , drN associated with the N clients on the route, with Xi

the domain of the evidential variable dri associated with the i-th client on R.
The computation of the total demand on a route as well as the evaluation of
constraints (26) and (27) for that route are illustrated by Example 3.

Example 3. Suppose that β = 0.1 and β = 0.05 and that we have n = 5
customers and m = 2 vehicles with capacity limit Q = 15. Moreover, suppose
knowledge about customer demands is represented by MF mΘn

defined on Θn =
Θ5 = Θ1 ×Θ2 ×Θ3 ×Θ4 ×Θ5 by:

mΘ5

({(2, 3, 8, 4, 5), (3, 5, 6, 7, 4), (3, 4, 7, 6, 2)}) = 0.5,

mΘ5

({(5, 5, 6, 4, 7), (7, 6, 5, 3, 4)}) = 0.3,

mΘ5

({(4, 6, 7, 4, 6), (5, 5, 6, 5, 7)}) = 0.2. (29)

Consider the two routes represented in Figure 2. Let us compute the sum of
the customer demands on the route (0, 4, 1, 2, 0), i.e., the route that collects the
demand of customer 4, then the demand of customer 1 and finally the demand
of customer 2. Call this route R. On this route, there are N = 3 clients. The
first client is client 4, hence according to the above notation, we have dr1 = d4

and X1 = Θ4. Similarly, we have

dr2 = d1, X2 = Θ1,

dr3 = d2, X3 = Θ2.

13



The marginalisation of mΘ5

on X1×X2×X3 is the MF mΘ5↓X1×X2×X3 defined
as:

mΘ5↓X1×X2×X3({(4, 2, 3), (7, 3, 5), (6, 3, 4)}) = 0.5,

mΘ5↓X1×X2×X3({(4, 5, 5), (3, 7, 6)}) = 0.3,

mΘ5↓X1×X2×X3({(4, 4, 6), (5, 5, 5)}) = 0.2. (30)

Now given mΘ5↓X1×X2×X3 and using Equation (25) such that f is the addition
of integers, uncertainty on the sum of client demands on route R is represented
by a MF denoted mΘR∑ and defined on the domain ΘR := {1, 2, . . . , N · Q} =

{1, . . . , 45} by:

mΘR∑ ({9, 15, 13}) = 0.5,

mΘR∑ ({14, 16}) = 0.3,

mΘR∑ ({14, 15}) = 0.2. (31)

The belief and plausibility that the sum of customer demands on R is smaller
or equal than the vehicle capacity Q are then respectively:

Bel(d4 + d1 + d2 ≤ 15) = mΘR∑ ({9, 15, 13}) +mΘR∑ ({14, 15})
= 0.7,

P l(d4 + d1 + d2 ≤ 15) = 1.

Hence, we have

Bel(dr1 + dr2 + dr3 ≤ Q) < 1− β = 0.9,

P l(dr1 + dr2 + dr3 ≤ Q) > 1− β = 0.95.

In other words, constraint (27) is satisfied on R but constraint (26) is not, and
thus any set of routes containing this route, such as the one shown in Figure 2,
is not a candidate solution.

Suppose further that the number of focal sets of MF mX1×···×XN is at most
c, then the worst case complexity of evaluating each of the belief constraints (26)
and (27) on this route is O(N ·QN · c). This latter complexity emerges from the
following: the QN factor is the maximal number of elements of a focal set of MF
mX1×···×XN . As we have N clients on a route, then for each element of a focal set
of MF mX1×···×XN , the addition of N integers must be performed, this explains
N · QN . The last factor in the complexity which is c, is related to performing
the product N · QN for the c focal sets of MF mX1×···×XN . Nonetheless, in a
particular case, the worst case complexity drops down significantly:

Remark 2. When the focal sets of mX1×···×XN are all Cartesian products of
N intervals, i.e., for all A ⊆ X1 × · · · ×XN such that mX1×···×XN (A) > 0, we
have A = A↓X1 × · · · × A↓XN with, for i = 1, . . . , N , A↓Xi = JAi;AiK for some
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integers Ai, Ai ∈ Xi such that Ai ≤ Ai, the worst case complexity is O(N · c).
This complexity to evaluate constraint (26) for route R comes from the fact that
(with dri the evidential variable associated with the i-th client on R):

Bel(

N∑
i=1

dri ≤ Q) =
∑
{mX1×···×XN (A)|A : max

a∈A
f(a) ≤ Q}

=
∑
{mX1×···×XN (A)|A : max

(a1,··· ,aN )∈A

N∑
i=1

ai ≤ Q}(32)

=
∑
{mX1×···×XN (A)|A :

N∑
i=1

Ai ≤ Q},

that is, at worst for each of the c focal sets of mX1×···×XN , the addition of N
integers needs to be performed. The complexity to evaluate constraint (27) is
the same since we have

Pl(

N∑
i=1

dri ≤ Q) =
∑
{mX1×···×XN (A)|A : min

(a1,··· ,aN )∈A

N∑
i=1

ai ≤ Q} (33)

=
∑
{mX1×···×XN (A)|A :

N∑
i=1

Ai ≤ Q}.

Remark 3. From (32), it is clear that the complexity to evaluate constraint (26)
for a given route R, depends on the complexity of finding for each focal set A
of mX1×···×XN , the element (a1, · · · , aN ) ∈ A that maximises

∑N
i=1 ai. Suppose

this latter complexity is at worst O(M), 1 ≤ M ≤ QN , for each focal set.
Then, the worst case complexity to evaluate constraint (26) for a route is O(N ·
M · c). Remark 2 provides a case, i.e., a particular shape for the focal sets
of mX1×···×XN , such that M = 1. We note that other, more refined yet still
leading to tractable values for M , shapes for these focal sets may be considered.
For instance, borrowing from robust optimisation [6], suppose that each focal set
A of mX1×···×XN can be written as

A = {(a1, · · · , aN )|ai ≥ Ai, ai ≥ Ai,
N∑
i=1

ai −Ai
Ai

≤ Γ}, (34)

for some lower bounds Ai and upper bounds Ai i = 1, . . . , N , and some un-
certainty budget Γ [6]; budget Γ in (34) limits the sum of the deviations from

the minimum demands Ai, i = 1, . . . , N . Then, maximizing
∑N
i=1 ai for each

focal set A is done over a more difficult, yet still manageable, shape than in
Remark 2. Obviously, similar comments can be made about the complexity of
constraint (27).
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3.1.2. Particular cases of the BCP modelling of the CVRPED

It is interesting to remark that depending on the values chosen for β and β
as well as the nature of the evidential demands di, i = 1, ..., n, the BCP mod-
elling of the CVRPED may degenerate into simpler or well-known optimisation
problems.

In particular, if mΘn

is Bayesian, i.e., we are dealing really with a CVRPSD,
then we have, for k = 1, . . . ,m,

Bel

 n∑
i=1

di

n∑
j=0

wki,j ≤ Q

 = Pl

 n∑
i=1

di

n∑
j=0

wki,j ≤ Q

 , (35)

and the BCP modelling of the CVRPED can be converted into an equivalent
optimisation problem, which is the CCP modelling of this CVRPSD, with β
in (8) set to β.

In contrast, if mΘn

is categorical and its only focal set is the Cartesian
product of n intervals, i.e., we are dealing with a CVRP where each customer
demand di is only known in the form of an interval Jdi; diK, then the total demand
on any given route is also an interval (its endpoints are obtained by summing the
endpoints of the interval demands of the customers on the route) and thus for
any k = 1, . . . ,m, BelΘ(

∑n
i=0 di

∑n
j=0 w

k
i,j ≤ Q) either equals 1 or equals 0, with

the former occurring iff
∑n
i=0 di

∑n
j=0 w

k
i,j ≤ Q, and PlΘ(

∑n
i=0 di

∑n
j=0 w

k
i,j ≤

Q) either equals 1 or equals 0, with the former occurring iff
∑n
i=0 di

∑n
j=0 w

k
i,j ≤

Q. Then, since
∑n
i=0 di

∑n
j=0 w

k
i,j ≤ Q ⇒

∑n
i=0 di

∑n
j=0 w

k
i,j ≤ Q, the belief-

constraints (26) and (27) reduce when β < 1 to the following constraints

n∑
i=0

di

n∑
j=0

wki,j ≤ Q, k = 1, . . . ,m. (36)

In other words, in the case of interval demands, the BCP modelling amounts
to searching the solution which minimises the overall cost of servicing the cus-
tomers (1) under constraints (36), i.e., assuming the maximum (worst) possible
customer demands, and thus it corresponds to the minimax optimisation pro-
cedures encountered in robust optimisation [49].

If mΘn

is consonant, then we are dealing with a CVRP where uncertainty
on customer demand is really of a possibilistic nature, and the BCP modelling
may then be connected to fuzzy-based approaches, that is approaches where
uncertainty on customer demands is represented by fuzzy sets such as in [50].
In addition, let us remark that if only marginal knowledge in the form of a
consonant MF mΘi having interval focal sets is available about the individual
demand of each customer i, i = 1, . . . , n, then, as explained in Section 2.3.3, mΘn

can be obtained by assuming (if justified) independence of the demands, in which
case it will yield a tractable situation thanks to Remark 2, whose conditions are
then satisfied (the focal sets of mΘn

being in this case Cartesian products of
intervals). However, mΘn

may also be derived from these pieces of marginal
knowledge by making other assumptions about the demand dependence and in
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particular by assuming that they are non-interactive [25, 5] - a more classical
independence assumption in the fuzzy setting - in which case the focal sets of
mΘn

will also be Cartesian products of intervals but they will also be nested
(mΘn

will then be consonant).
If β = β, then constraints (27) can be dropped, that is, only constraints (26)

need to be evaluated (if constraints (26) are satisfied then constraints (27) are
necessarily satisfied due to the relation between the belief and plausibility func-
tions). As a matter of fact, the BCP approach originally introduced in [40] is
of this form (no constraint based on Pl is considered). Most importantly, when
β = β and the evidential variables di, i = 1 . . . , n are independent, the BCP
modelling of the CVRPED can be converted into an equivalent optimisation
problem, which is the CCP modelling (with β in (8) set to β) of a CVRPSD
where customer demands are represented by independent stochastic variables
denoted di, i = 1, . . . , n, with associated probability mass function pi obtained
from mΘi := mΘn↓Θi as follows: for each focal set A ⊆ Θi of mΘi , the mass
mΘi(A) is transferred to the element θ = max(A). Indeed, with such a definition
of pi, it is easy to show that we have, for k = 1, . . . ,m,

Bel

 n∑
i=1

di

n∑
j=0

wki,j ≤ Q

 = P

 n∑
i=1

di

n∑
j=0

wki,j ≤ Q

 . (37)

Let us eventually remark that the case β = 1 > β is the converse of the case

β = β in the sense that constraints (26) can be dropped (as they are necessarily
satisfied) and only constraints (27) need then to be evaluated. Moreover, in
this case, if the evidential variables di, i = 1 . . . , n are independent, the BCP
modelling of the CVRPED can be converted into an equivalent optimisation
problem, which is the CCP modelling (with β in (8) set to β) of a CVRPSD
where customer demands are represented by independent stochastic variables
denoted di, i = 1, . . . , n, with associated probability mass function pi obtained
from mΘi as follows: for each focal set A ⊆ Θi of mΘi , the mass mΘi(A) is
transferred to the element θ = min(A). Indeed, with such a definition of pi, it
is easy to show that we have, for k = 1, . . . ,m,

Pl

 n∑
i=1

di

n∑
j=0

wki,j ≤ Q

 = P

 n∑
i=1

di

n∑
j=0

wki,j ≤ Q

 . (38)

3.1.3. Influence of β, β and Q on the CVRPED-BCP optimal solution cost

In this section, we study the influence of the parameters β, β and Q, on the
optimal solution cost of the CVRPED modelled via BCP (in the remainder of
this article, we will simply say CVRPED-BCP instead of CVRPED modelled
via BCP).

The following propositions hold:

Proposition 2. The optimal solution cost is non increasing in Q.
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Proof. See Appendix B.

Proposition 3. The optimal solution cost is non increasing in β.

Proof. See Appendix C.

Proposition 4. The optimal solution cost is non increasing in β.

Proof. The proof is similar to that of Proposition 3.

Informally, Propositions 2–4 state that if the decision maker is willing to buy
vehicles with a higher capacity or to have vehicle capacity exceeded on any route
more often, then he will obtain at least as good (at most as costly) solutions.

3.1.4. Influence of customer demand ranking on the CVRPED-BCP optimal
solution cost

In this section, we study the influence on the CVRPED-BCP optimal solu-
tion cost, of considering uncertain knowledge representing a more pessimistic
estimation of the demand of each customer than currently assumed, that is
uncertain knowledge telling that the demand of each customer is higher than
currently believed.

Specifically, let mΘn

and mΘn

+ be two MF representing uncertain knowledge
about customer demands, such that evidential variables di, i = 1, . . . , n, are
independent according to both these mass functions. Furthermore, let mΘi :=
mΘn↓Θi and mΘi

+ := mΘn↓Θi

+ , i = 1, . . . , n. Denote by ĈQ,β,β and Ĉ+

Q,β,β
the

costs of optimal solutions to the CVRPED-BCP when customer demands are
known in the form of mΘn

and mΘn

+ , respectively, for some β, β and Q.
The following proposition holds:

Proposition 5. mΘi � mΘi
+ , i = 1, . . . , n⇒ ĈQ,β,β ≤ Ĉ

+

Q,β,β
.

Proof. See Appendix D.

Informally, Proposition 5 shows that the more pessimistic knowledge is about
customer demands, the greater the cost of the optimal solution.

An immediate consequence of this result is:

Corollary 1. Assume that the focal sets of MF mΘi and mΘi
+ , i = 1, . . . , n, are

all intervals and that mΘi
+ can be obtained from mΘi , i = 1, . . . , n, as follows: for

each interval A = JA;AK such that mΘi(A) > 0, the mass mΘi(A) is transferred
to the interval A+ = JA;A+a+K, with a+ ∈ J0;Q−AK. Then, ĈQ,β,β ≤ Ĉ

+

Q,β,β
.

Another immediate consequence is:

Corollary 2. Assume that the focal sets of MF mΘi and mΘi
+ , i = 1, . . . , n, are

all intervals and that mΘi can be obtained from mΘi
+ , i = 1, . . . , n, as follows:

for each interval A+ = JA+;A+K such that mΘi
+ (A+) > 0, the mass mΘi

+ (A+)

is transferred to the interval A = JA+ − a;A+K, with a ∈ J0;A+ − 1K. Then,
ĈQ,β,β ≤ Ĉ

+

Q,β,β
.
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Remark 4. In both Corollaries 1 and 2, it is easy to show that mΘi � mΘi
+ , i =

1, . . . , n, which is the reason why these corollaries hold. Note that for Corol-
lary 1, we can also easily show that mΘi v mΘi

+ , i = 1, . . . , n, whereas for Corol-

lary 2, we have mΘi
+ v mΘi , i = 1, . . . , n. This shows that the CVRPED-BCP

optimal solution cost will not necessarily be higher if knowledge about customer
demand is less specific. As will be seen in the next section, a different conclusion
is reached for the recourse model, and specifically a counterpart to Proposition 5,
based on v rather than �, holds.

3.2. The CVRPED modelled by a recourse approach

A recourse approach for the CVRPED is proposed in this section. The
general model, extending the one recalled for the CVRPSD in Section 2.2.2, is
presented in Section 3.2.1. Then, in Section 3.2.2, we detail how uncertainty
on recourse actions is obtained in this model and in Section 3.2.3 we provide a
method to compute efficiently this latter uncertainty in an important particular
case. Similarly to what has been done for the BCP model, we discuss particular
cases of our general model in Section 3.2.4 and study the influence of customer
demands specificity on the optimal solution cost in Section 3.2.5.

3.2.1. Formalisation

The CVRPED may be addressed using an extension of the other main ap-
proach to modelling stochastic programs, that is the recourse approach. We
propose to extend the recourse approach to the CVRPED, for the following
policy and assumptions studied for the stochastic case in [12, 27, 39, 23]. Each
actual customer demand cannot exceed the vehicle capacity. In addition, when
a vehicle arrives at a customer on its planned route, it is loaded with the actual
customer demand up to its remaining capacity. If this remaining capacity is
sufficient to pick-up the entire customer demand, then the vehicle continues its
planned route. However, if it is not sufficient, i.e., there is a failure, then the
vehicle returns to the depot, is emptied, goes back to the client to pick-up the
remaining customer demand and continues its originally planned route.

Consider a given route R containing N customers and, without lack of gener-
ality, that the i-th customer on R is customer i. According to the above setting,
a failure cannot occur at the first customer on R. However, it can occur at any
other customer on R, and there may even be failure at multiple customers on
R (at worst, if the actual demand of each customer is equal to the capacity of
the vehicle, failure occurs at each customer except the first one).

Formally, let us introduce a binary variable ri that equals 1 if failure occurs
at the i-th customer on R and 0 otherwise (by problem definition r1 = 0). Then,
the possible failure situations that may occur along R may be represented by the
vectors (r2, r3, . . . , rN ) ∈ {0, 1}N−1. To simplify the exposition, we define the
set Ω as the space of binary vectors representing the possible failure situations
along R: each failure situation (r2, r3, . . . , rN ) is then a binary vector belonging
to Ω = {0, 1}N−1. For instance, when R contains only N = 3 customers, we
have Ω = {(0, 0) , (1, 0) , (0, 1) , (1, 1)}, where the binary vectors mean that the
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vehicle needs to perform a round trip to the depot, respectively, “never”, “when
it reaches the second customer”, “when it reaches the third customer”, and
“when it reaches both the second and third customers”.

Furthermore, let g : Ω → R+ be a function representing the cost of each
failure situation ω ∈ Ω, with ω being the binary vector (r2, r3, . . . , rN ) repre-
senting a failure situation. Since the penalty cost upon failure on customer i is
2c0,i (a failure implies a return trip to the depot), the cost associated to failure
situation ω is

g(ω) =

N∑
i=2

ri2c0,i. (39)

Let mΩ be a MF representing uncertainty towards the actual failure situation
occurring on R – as will be shown in the next section, evidential demands may
induce such a MF.

Then, adopting a similar pessimistic attitude as in the recourse approach to
belief linear programming [40], the upper expected penalty cost C∗p(R) of route
R may be obtained using (14) as follows:

C∗p(R) = E∗(g,mΩ). (40)

Accordingly, the upper expected cost C∗e(R) of route R may be defined as

C∗e(R) = C(R) + C∗p(R), (41)

with C(R) the cost (2) of travelling along route R when no failure occurs.
The CVRPED under the above recourse policy, may then be modelled using

a modified version of the CVRP model of Section 2.1. Specifically, our recourse
modelling of the CVRPED aims at

min

m∑
k=1

C∗e(Rk), (42)

subject to constraints (3) - (6), with constraints (5) replaced by constraints (11).
Evaluating the objective function (42) requires the computation for each

route, of the MF mΩ representing uncertainty on the actual failure situation
occurring on the route. This is detailed in the next section.

3.2.2. Uncertainty on recourses

Consider again a route R containing N customers. In addition, let us first
assume that client demands on N are known without any uncertainty, that is
we know that the demand of client i, i = 1, . . . , N , is some value θi ∈ Θ. Then,
it is clear that the above recourse policy amounts to the following definition for
the binary failure variables ri:

ri =

{
1, if qi−1 + θi > Q,
0, otherwise,

∀i ∈ {2, . . . , N} (43)
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where qj , j = 1, . . . , N , denotes the load in the vehicle after serving the j-th
customer such that qj = θ1 for j = 1 and, for j = 2, . . . , N ,

qj =

{
qj−1 + θj −Q, if qj−1 + θj > Q,
qj−1 + θj , otherwise.

(44)

In other words, when it is known that the demand of the i-th customer is θi,
i = 1, . . . , N , then we have a precise demand vector on R that induces a precise
binary failure situation vector (r2, r3, . . . , rN ), with ri defined by (43). This can
be encoded by a function f : ΘN → Ω, s.t. f (θ1, . . . , θN ) = (r2, r3, . . . , rN ).
For example, suppose we have N = 3 customers on route R, with respective
demands θ1 = 3, θ2 = 3 and θ3 = 5, and the vehicle capacity limit is Q = 5. In
such case, f (θ1, θ2, θ3) implies the failure situation vector (r2 = 1, r3 = 1).

In the general case, client demands on R are known in the form of a MF
mX1×···×XN , which is the marginalisation of mΘn

on the domains of the eviden-
tial variables dr1, . . . , drN associated with the N clients on the route, with Xi

the domain of the evidential variable dri associated with the i-th client on R.
In such case, using (25) with f defined in the preceding paragraph, uncertainty
on the actual failure situation on R is represented by a MF mΩ defined as

mΩ(B) =
∑

f(A)=B

mX1×···×XN (A), ∀B ⊆ Ω. (45)

Computing mΩ defined by (45) involves evaluating f(A) for any focal set A of
mX1×···×XN . Evaluating f(A) for some A ⊆ X1×· · ·×XN , implies |A| (and thus
at worst QN ) times the evaluation of function f at some point (θ1, . . . , θN ) ∈
ΘN . Hence, computing Equation (45) is generally intractable. Nonetheless, in
a particular case, it is possible to compute f(A), and thus Equation (45), with
a much more manageable complexity:

Remark 5. When the focal sets of mX1×···×XN are all Cartesian products of
N intervals, i.e., for all A ⊆ X1 × · · · ×XN such that mX1×···×XN (A) > 0, we
have A = A↓X1×· · ·×A↓XN with, for i = 1, . . . , N , A↓Xi = JAi;AiK, it becomes
possible to compute f(A) with a complexity of the order 2N , as detailed in the
next section, and thus in this case if mX1×···×XN has at most c focal sets, the
worst-case complexity to evaluate Equation (45) is O(2N · c).

3.2.3. Interval demands

Let us consider a route R with N customers, such that the demand of cus-
tomer i, i = 1, . . . , N , is known in the form of an interval of positive integers,
which we denote by JAi;AiK, where Ai ≥ 1 and Ai ≤ Q. In this case, the failure

situation on R belongs surely to f
(
JA1;A1K× · · · × JAN ;AN K

)
⊆ Ω. Hereafter,

we provide a method to efficiently compute f
(
JA1;A1K× · · · × JAN ;AN K

)
.

In a nutshell, this method consists in generating a rooted binary tree, which
represents synthetically yet exhaustively what can possibly happen on R in
terms of failure situations.
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More precisely, this tree is based on the following remark. Suppose a vehicle
travelling along R and all that is known about its load when it arrives at the
i-th customer on R is that its load belongs to an interval Jq; qK. Let us denote
by qi its load after visiting the i-th customer. Then, there are three exclusive
cases:

1. either q + Ai ≤ Q, hence there will surely be no failure at that customer
and all that is known is that qi ∈ Jq; qK + JAi;AiK;

2. or q + Ai > Q, hence there will surely be a failure at that customer and

all that is known is that qi ∈ Jq; qK + JAi;AiK−Q;

3. or q + Ai ≤ Q < q + Ai, hence it is not sure whether there will be or not
a failure at that customer. However, we can be sure that if there is no
failure at that customer, i.e., the sum of the actual vehicle load and of
the actual customer demand is lower or equal to Q, then it means that
qi ∈ Jq +Ai;QK ; and if there is a failure at that customer, then it means

that qi ∈ J1; q +Ai −QK.

By applying the above reasoning repeatedly, starting from the first customer
and ending at the last customer, whilst accounting for and keeping track of all
possibilities and their associated failures (or absence thereof) along the way, one
obtains a binary tree. The tree levels are associated to the customers according
to their order on R. The nodes at a level i represent the different possibilities in
terms of imprecise knowledge about the vehicle load after the i-th customer, and
they also store whether these imprecise pieces of knowledge about the load were
obtained following a failure or an absence of failure at the i-th customer. The
pseudo code of the complete tree induction procedure is provided in Algorithm 1
and illustrated afterwards by Example 4.
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(J4; 8K, 0)

(J9; 10K, 0)

(J6; 9K, 1)

(J1; 5K, 1)

(J8; 10K, 0) (J1; 4K, 1)

1st level

2nd level

3rd level

Figure 3: Recourse tree constructed for Example 4

Algorithm 1 Induction of Recourse Tree (RT)

Input: interval load Jq; qK, Boolean failure variable r, next customer number i
Output: final tree Tree

1: create a root node containing interval load Jq; qK and Boolean failure r
2: if i = N + 1 then
3: return Tree = {root node}
4: else if q +Ai ≤ Q then
5: JqL; qLK = Jq; qK + JAi;AiK
6: rL = 0
7: TreeL = RT (JqL; qLK, rL, i+ 1)
8: attach TreeL as left branch of Tree
9: else if q +Ai > Q then

10: JqR; qRK = Jq; qK + JAi;AiK−Q
11: rR = 1
12: TreeR = RT (JqR; qRK, rR, i+ 1)
13: attach TreeR as right branch of Tree
14: else
15: JqL; qLK = Jq +Ai;QK
16: rL = 0
17: TreeL = RT (JqL; qLK, rL, i+ 1)
18: attach TreeL as left branch of Tree
19: JqR; qRK = J1; q +Ai −QK
20: rR = 1
21: TreeR = RT (JqR; qRK, rR, i+ 1)
22: attach TreeR as right branch of Tree
23: end if

Example 4. Let us illustrate Algorithm 1 on a route R where Q = 10 and
containing 3 customers, with J4; 8K, J5; 7K and J7; 9K the imprecise demands of
the first, second and third customers, respectively. Since the demand of the first
customer is J4; 8K, and there is no failure by definition at the first customer,
and the customer following the first customer is the second customer, the tree
is obtained with RT (J4; 8K, 0, 2) and is shown in Fig. 3.

For each leaf of the tree, by concatenating in a vector the Boolean failure
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variable ri at level i = 2, . . . , N , written on the path from the root to the leaf, we
obtain the binary failure situation vector (r2, r3, . . . , rN ). Hence, all the leaves
of the tree, yield the subset B ⊆ Ω. For instance, the rightmost leaf of the tree
in Fig. 3 yields the failure situation vector (r2 = 1, r3 = 1), the leftmost leaf
yields (r2 = 0, r3 = 1) and the remaining leaf yields (r2 = 1, r3 = 0). The tree
in this example yields thus the set B = {(1, 0) , (0, 1) (1, 1)}.

Proposition 6. The set B built using the tree generated by Algorithm 1 verifies
B = f

(
JA1;A1K× · · · × JAN ;AN K

)
.

Proof. See Appendix E.

The maximum number of leaf nodes in the tree is 2N−1. Thus, the algorith-
mic complexity to obtain set B ⊆ Ω is of the order 2N .

3.2.4. Particular cases of the recourse modelling of the CVRPED

In this section, some comments are provided on the behaviour of our recourse
modelling, especially with respect to some particular evidential demands.

If mΘn

is Bayesian, i.e., we are dealing really with a CVRPSD, then mΩ

is Bayesian on any given route R. Hence, the upper expected penalty cost
C∗p(R) reduces to the classical (probabilistic) expected value of cost function
g with respect to the probability mass function mΩ, and thus our recourse
modelling of the CVRPED clearly degenerates into the recourse modelling of
the aforementioned CVRPSD.

We showed in Section 3.1.2 that the CVRPED-BCP can be converted, when
β = β and the evidential variables di, i = 1 . . . , n, are independent, into an
equivalent CVRPSD modelled via chance constrained programming, by trans-
forming each evidential demand represented by MF mΘi into a stochastic de-
mand represented by probability mass function pi obtained from mΘi by trans-
ferring the mass mΘi(A) to the element θ = max(A). Example 5 shows that
under the recourse approach, this latter transformation cannot be used in gen-
eral to convert a CVRPED into an equivalent CVRPSD.

Example 5. Suppose we have one available vehicle with capacity limit Q = 14,
n = 3 clients with J2; 8K, J3; 8K and J3; 8K the imprecise demands of clients 1,
2 and 3, respectively. The depot is denoted by 0 and the travel cost matrix
C = (ci,j) where i, j ∈ {0, 1, 2, 3} is shown in Table 1. Under the recourse
approach, the optimal solution to this CVRPED instance is the route defined by
the path (0, 3, 2, 1, 0) (its upper expected cost is 9.3). Using the above-mentioned
transformation to transform the evidential demands into stochastic demands,
we obtain p1(8) = 1, p2(8) = 1, and p3(8) = 1, and under the recourse approach
the optimal solution to this CVRPSD instance is either the route defined by the
path (0, 2, 1, 3, 0) or (0, 3, 1, 2, 0) (the expected cost of each one of these routes
being 9.2), which are different from the optimum found for the CVRPED.

Furthermore, let us remark that for a given route R containing N clients
whose demands are known in the form of a MF mX1×···×XN , its upper expected
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Table 1: Travel cost matrix C

0 1 2 3
0 +∞ 1 1.1 3
1 1 +∞ 1 2.1
2 1.1 1 +∞ 2.1
3 3 2.1 2.1 +∞

cost C∗e(R) is necessarily reached for some probability measure PX1×···×XN

belonging to the set P(mX1×···×XN ) of probability measures compatible with
mX1×···×XN and defined by

P(mX1×···×XN ) = {P |∀A ⊆ X1 × · · · ×XN , Bel
X1×···×XN (A) < P (A)}. (46)

However, this measure cannot be determined easily in advance; it can be exhib-
ited once possible recourses on the route and their associated costs are known.
Moreover, we note that it is impossible to find a sensible transformation of evi-
dential demands into stochastic demands such that each solution has the same
costs in both the evidential and stochastic approaches, as shown by Example 6.

Example 6. Suppose a problem where we have m = 2 available vehicles and
n = 5 clients with demands represented by MF mΘn

defined as

mΘn

(J7K× J6K× J1; 2K× J1K× J1K) = 1. (47)

Consider the two following possible solutions, containing each two routes:

S1 = {R1
1, R

1
2},

S2 = {R2
1, R

2
2},

with R1
1 = (0, 1, 2, 3, 0), R1

2 = (0, 4, 5, 0) and R2
1 = (0, 1, 2, 3, 5, 0), R2

2 = (0, 4, 0).
The upper expected cost of Si, i = 1, 2, is C∗E(Si) := C∗E(Ri1)+C∗E(Ri2). Consider
now the possible transformations of the evidential demands mΘn

into stochastic
demands pΘn

: it seems sensible that pΘn

be chosen in the set of probability
distributions compatible with mΘn

, that is in

P(mΘn

) = {(pΘn

(7, 6, 1, 1, 1) = α, pΘn

(7, 6, 2, 1, 1) = 1− α)|α ∈ [0, 1]}. (48)

Let CαE(Si) denote the expected cost of solution Si, i = 1, 2, under stochastic
demands represented by probability distribution pΘn

α defined by pΘn

α (7, 6, 1, 1, 1) =
1 − α, pΘn

α (7, 6, 2, 1, 1) = α, for some α ∈ [0, 1]. Assume that customer 5 is
further away from the depot than customer 3, that is c0,5 > c0,3. Then, we
obtain

C∗E(S1)− CαE(S1) = 2c0,3 · (1− α) (49)

and
C∗E(S2)− CαE(S2) = 2c0,5 · α+ 2c0,3 · α. (50)
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The upper expected cost C∗E(S1) of S1 is thus reached for probability distribution
pΘn

1 , whereas the upper expected cost C∗E(S2) of S2 is reached for probability dis-
tribution pΘn

0 . Hence, for S1 to have the same costs in both the evidential and
stochastic approaches and for S2 to also have the same costs in both the eviden-
tial and stochastic approaches, different transformations of evidential demands
into stochastic demands must be used.

The objective function (42) of our recourse model relies on optimising against
C∗e(R) which is the upper, i.e., worst, expected cost of a route. In particular,
if mΘn

is categorical, then C∗e(R) is the worst possible cost of R. Hence, op-
timising (42) has some similarities with the protection against the worst case
popular in robust optimisation [49].

Though, another approach could be followed [52], where one optimises against
the lower, i.e., best, expected cost C*e(R) = C(R) + C*p(R), where C*p(R)

is evaluated using (13) such that C*p(R) = E∗(g,m
Ω). This approach is ap-

propriate when we are interested in the most optimistic solution. More com-
plex decision schemes could also be considered, such as interval dominance [52],
which would rely on C∗e(R) and C*e(R) and yield in general a set of optimal
(non-dominated) solutions. Borrowing from what is done in label ranking [22],
an interesting study would then be to identify from the set of non-dominated
solutions, some parts of routes that would be more relevant (or preferred) to be
included in a solution, over some irrelevant ones. This is left for future work.

Finally, another interesting particular case is when mΘn

is obtained from
marginal knowledge about individual customer demands in the form of conso-
nant MF mΘi , i = 1, . . . , n, having interval focal sets and the assumption that
the demands are independent or non-interactive. As recalled in Section 3.1.2, the
focal sets of mΘn

are then Cartesian products of intervals under both assump-
tions, in which case the recourse modelling of the CVRPED becomes tractable
according to Remark 5.

3.2.5. Influence of customer demand specificity on the CVRPED-recourse opti-
mal solution cost

In this section, we study the behaviour of the optimal solution cost of the
CVPRED modelled via the recourse approach (in the remainder of this article,
we will simply say CVRPED-recourse rather than the CVRPED modelled via
the recourse approach), when knowledge specificity about customer demands
decreases.

Specifically, let mΘn

and mΘn

? be two MF representing uncertain knowledge
about customer demands, such that evidential variables di, i = 1, . . . , n, are
independent according to both these mass functions. Furthermore, let mΘi :=
mΘn↓Θi and mΘi

? := mΘn↓Θi
? , i = 1, . . . , n. Denote by ĈRec and Ĉ?Rec the costs of

optimal solutions to the CVRPED-recourse when customer demands are known
in the form of mΘn

and mΘn

? , respectively.
The following proposition holds:

Proposition 7. mΘi v mΘi
? , i = 1, . . . , n⇒ ĈRec ≤ Ĉ?Rec.
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Proof. See Appendix F.

Informally, Proposition 7 shows that the less specific knowledge is about
customer demands, the greater the cost of the optimal solution.

An immediate consequence of this result is:

Corollary 3. Assume that for i = 1, . . . , n, mΘi
? is built from mΘi as follows:

for each A ⊆ Θi such that mΘi(A) > 0, the mass mΘi(A) is transferred to a
subset A? such that A ⊆ A? ⊆ Θi. Then, we have ĈRec ≤ Ĉ?Rec.

Proposition 7 and Propositions 2–5 provide theoretical properties of the
CVRPED solutions obtained under the recourse and the BCP approaches, re-
spectively, when using exact optimisation methods. For now, such methods can
not solve large instances of the CVRP, from which the CVRPED derives. As
a matter of fact, Section 4 reports solution strategies to these two CVRPED
models using a metaheuristic algorithm.

4. Solving the CVRPED

This section presents a metaheuristic algorithm to solve the two proposed
CVRPED models and reports some experimental tests of this algorithm. More
precisely, a simulated annealing algorithm for both the BCP and the recourse
models is first described in Section 4.1. Next, benchmarks for the CVRPED are
presented in Section 4.2. Finally, experimental tests using these benchmarks
are provided in Sections 4.3 and 4.4 for the BCP and the recourse models,
respectively.

4.1. A simulated annealing algorithm for the CVRPED

As for many NP-hard problems like the CVRP, exact solution methods might
need a prohibitively large time to solve large instances. When uncertainty is
introduced into the CVRP, the problem can easily become even more difficult.
Metaheuristics are algorithms built on general (meta) concepts that search the
solution space in a reasonable time and thus may be employed as a successful
alternative to solve such a combinatorial optimisation problem. Various meta-
heuristic algorithms exist like: simulated annealing [37], genetic algorithms [36],
tabu search [30, 31], etc. In this study, we will use simulated annealing, which
is a well-known local search optimisation method. Generally speaking, a local
search algorithm moves iteratively from solution to solution in the space of can-
didate solutions (the search space) by applying local changes, until a satisfying
near-optimal solution is found.

Indeed, to try to find the global minimum of the cost function, the simu-
lated annealing moves from solution to solution using either descent (improving)
moves or deterioration moves, hoping that these non-improving moves will even-
tually help the process escape local optima [37]. One can say that it starts from
a known initial configuration of a system (candidate solution) with a high tem-
perature and then uses general neighbourhood search strategies to explore other
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candidate solutions by following neighbourhood transitions (moves). For every
temperature, the configuration of the system (candidate solution) is rearranged
(transformed) by a series of neighbourhood moves. A rearranged configuration
becomes the new candidate solution with a probability depending on the current
temperature, i.e., the lower the temperature, the lower the probability to accept
non-improving moves. The temperature of the system is gradually lowered, and
the process continues until reaching the freezing temperature of the system.

Our instantiation of simulated annealing for the CVRPED is provided by Ap-
pendix G (see in particular its pseudo-code given by Algorithm 2). The same
pseudo-code is used for both the BCP and the recourse approaches. One
can find in Algorithm 2 a modelling technique parameter MD that takes the
value MD =“BCP” when the CVRPED-BCP is solved. In this case, the ini-
tial configuration is generated either randomly or using a first-fit greedy ap-
proach3 while respecting the constraints of the BCP model from Section 3.1.1.
The neighbourhood configuration(...) routine generates a neighbourhood
configuration that respects the CVRPED-BCP constraints, and is based on
the following two operators that are applied consecutively on the current con-
figuration C at each iteration. These operators are called fix minimum and
replace highest average. They are described below and illustrated using ex-
amples in Appendix H.

– Fix minimum: This operator is applied on 80% of the iterations. It is based
on selecting and freezing the positions in routes of the five customers, with
the shortest distances to their right side customer4. This is done by com-
puting distances between each pair of consecutive customers on all routes,
including distances to the depot. Accordingly, fix minimum selects the five
smallest distances values and fixes their corresponding left side customers.
Next, fix minimum selects five random customers that exclude the depot and
the customers fixed before, and removes them from their route. Subsequently,
every customer removed will be inserted in a random route, while satisfying
the problem constraints. The insert position of each customer on the selected
route is determined based on the shortest distance separating it from its new
left side customer.

– Replace highest average: This neighbourhood operator calculates the av-
erage distance separating every customer from its neighbours in a current
route configuration. Computing the average distance for a client i reduces to
calculating

ci−1,i+ci,i+1

2 , assuming clients i−1, i and i+1 are consecutive in the
route5. Afterwards, replace highest average selects five customers having
the five highest average distances and removes them from their routes. The
removed clients are then randomly inserted in the available routes, as long

3A blind algorithm that inserts clients in routes in turn: each client is inserted in the first
route that can serve it.

4Given the pair of customer < i− 1, i >, the right side customer is the i-th customer.
5The notation ci−1,i indicates the travel cost between i−1 and i, as defined in Section 2.1,

which in our algorithm is assumed to be the euclidean distance separating customers.
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as the problem constraints are respected. Furthermore, every removed cus-
tomer i is inserted into the route position leading to the smallest average
distance that will separate this customer from its new (i−1) th and (i+1) th
neighbours.

If the above operators do not lead to a new neighbourhood configuration that
satisfies the CVRPED-BCP constraints, we apply the operators a second time.
If the second attempt fails as well, then the configuration C is not modified, i.e.,
C∗ = C.

The complexity of an iteration for the BCP model emerges from evaluating
the CVRPED-BCP constraints for the neighboring configuration, in particular
the belief constraints (26) and (27), the complexity of which is provided in
Section 3.1.1.

We solve the CVRPED-recourse with the same simulated annealing, by set-
ting the modelling technique parameter to MD =“recourse” in Algorithm 2.
The initial config(...) method proceeds by generating initial configura-
tions that are subject to the CVRPED-recourse constraints mentioned in Sec-
tion 3.2.1, using either a first fit greedy approach or randomly. The routine
neighbourhood configuration(...) applies three consecutive neighbourhood
operators to each iteration: fix minimum, replace highest average and flip

route.

– Fix minimum and replace highest average operate similarly as in the BCP
case, except that the problem constraints are now the CVRPED-recourse
constraints. Recall that the recourse model lifts the capacity constraints,
in the sense that any capacity excess (overflow) is addressed by the objec-
tive function using recourse decisions. This means that as fix minimum and
replace highest average are iteratively applied by the simulated annealing,
we may end up with routes holding excessive total demands. Consequently,
these routes will systematically fail, while other routes will hold limited to-
tal customer demands. Therefore, we incorporate to each of the fix minimum

and replace highest average operators, a method that maintains relatively
balanced total demands on routes, during the process of moving customers
from a route to another. More specifically, before a customer is inserted into
a new route, total customer demands on each route yields a probability, in-
dicating if a route is favourable for servicing an additional customer. The
probability associated to each route is inversely proportional to the total cus-
tomer demands on a route, i.e., the smaller the total customer demands is on
a route, the more it is probable to choose this route to include an additional
customer.

– The operator flip route is applied on 25% of the iterations. It reverses
the order of a route if this improves its upper expected cost. Indeed, a
route R having the path (0, 1, . . . , N, 0) and its reverse R−1 with the path
(0, N, . . . , 1, 0) do not have necessarily the same upper expected penalty cost.

The complexity of an iteration for the recourse model corresponds to evaluat-
ing the uncertainty on the recourses of each one of them routes of a configuration
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C, the complexity of which is given in Section 3.2.2.
Let us finally emphasize that the evidential approaches proposed in this pa-

per are not limited to using simulated annealing or metaheuristics. Some of the
exact methods used for the CVRPSD could be extended to these approaches.
This is the case, for instance, of the Column Generation (CG) algorithm pro-
posed in [12] for the recourse modelling of the CVRPSD. A CG algorithm relies
on a linear program with prohibitively many variables (columns) associated to
feasible routes. One could use our evidential approach to evaluate the total cost
(base cost plus recourse cost) of each generated column (route), especially when
the columns are constructed by Dynamic Programming (DP).

More exactly, each column (route) can be constructed by generating a cy-
cle in a graph of DP states associated to sub-problems satisfying the Bellman
principle of optimality. Assuming joint focal sets about customer demands are
Cartesian products of intervals, one could define a DP state

(
v,
[
qv, qv

])
for

each vertex v ∈ V and for each interval of residual supply [qv, qv] at v (quantity
remaining in a vehicle after servicing clients up to v and performing recourses).
The total cost of a route in a given state can be determined, for instance, as the
sum of the traversed edges plus the upper expected cost of the recourse actions.
In a loose sense, this is similar to the DP approach from [12] that constructs a
state for each vertex v and for each possible value of the cumulative expected
demand (of all the clients in the route up to v) and of the variation of this
cumulative demand.

4.2. The CVRPED benchmarks

We generated two instance sets CVRPED and CVRPED+, based on the
set A of the Augerat test bed for the CVRP [46]. Each instance in these two
sets corresponds to an instance in Augerat set A and has the same customer
coordinates and capacity limit as this instance.

For each instance of the first CVRPED set, the knowledge on customer
demands mΘn

is obtained by assuming that the evidential client demands di, i =
1, . . . , n of this instance are independent. Moreover, each di is associated to the
mass function mΘi defined by

mΘi({ddeti }) = 0.8, (51)

mΘi([zi, zi]) = 0.2, (52)

with ddeti the original deterministic demand of client i in the corresponding
instance of Augerat set A, and with zi and zi drawn at random in (ddeti , Q] and
[zi, Q], respectively.

For each instance of the second set CVRPED+, the evidential client demands
di are also assumed to be independent, and their associated mass function is
denoted by mΘi

+ and defined from mΘi as follows:

mΘi
+ ([ddeti , ddeti + a+

i ]) = 0.8, (53)

mΘi
+ ([zi, zi]) = 0.2, (54)
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with a+
i drawn randomly in [0, zi − ddeti − 1]. Note that mΘi v mΘi

+ and

mΘi � mΘi
+ , i = 1, . . . , n.

In the next sections, an experimental study based on the CVRPED and
CVRPED+ instances6 is presented for the BCP and recourse models solved
using the algorithm described in Section 4.1. The programs were written in
Java and the experiments were conducted on the 5 nodes of a cluster. The
configuration of each node is as follows: 2 processors Intel R Xeon R E5-2630
v3 with 8 cores per processor having a 48GB memory shared between the 2× 8
cores of the node. Each instance was executed on one core that has a memory
of 2.8 GB.

4.3. Experimental study for the CVRPED-BCP

Our set of experiments on the CVRPED-BCP involve varying the values
β and β involved in the constraints (26) and (27) for the CVRPED and the
CVRPED+ instances separately, where for each variation each instance was
solved 30 times.

4.3.1. The CVRPED-BCP cost variation based on β and β

In this first part, we show results of our experiments for the CVRPED and
the CVRPED+ instances in Tables 2 and 3, respectively. Indeed, we solved
the CVRPED-BCP for two different values that we chose for the pair (β, β),

such that β ≥ β, and both values were employed for the CVRPED and the
CVRPED+ instances, separately. The columns figuring in each of these tables,
are explained in the following. The first column is the name of each instance.
The first field in this column (l in Table 2 and l+ in Table 3), exposes the
identification number of an instance and the second field “A” stands for aleatory
indicating that the coordinates of the problem graph vertices were generated
randomly in the original Augerat set A [3]. The third field designates the
number n of vertices, while the last field provides the number m of vehicles.
The “Best cost”, “Std. dev.” and “Avg. runtime” columns show respectively,
the best solution, the standard deviation and the average running time that we
obtained for each indicated value of the pair (β, β).

We notice the costs of the best solutions obtained with β = 0.4, β = 0.25

are lower than the costs of the best solutions obtained with β = 0.2, β = 0.15 in

Table 2 as well as in Table 3, that is, the most constraining pair (β, β) induces
the worst costs, as can be expected from Propositions 3 and 4. This shows that
while our solving algorithm is not an exact optimisation method, it does exhibit
experimentally a sound behaviour with respect to parameters β and β.

4.3.2. The CVRPED-BCP cost variation based on client demand ranking

This section compares the BCP results on the CVRPED instances with the
BCP results on the CVRPED+ instances. Specifically, Table 4 compares the

6Our data sets can be found on the web site of the LGI2A laboratory [34].
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Table 2: Results of the simulated annealing algorithm for the CVRPED-BCP using the
CVRPED instances

Instance l-A-nn-mm : β = 0.4, β = 0.25 β = 0.2, β = 0.15

l instance id, Best Std. Avg. Best Std. Avg.
n clients, m vehicles cost dev. runtime cost dev. runtime

1-A-n32-m12 1418,3 3,7 3881s. 1850,9 5,3 3733s.
2-A-n33-m13 1055,3 0 4199s. 1491,6 17,5 4496s.
3-A-n33-m13 1073,1 6 4495s. 1480,2 0,6 4549s.
4-A-n34-m14 1320,6 0,1 3818s. 1749,1 0 3852s.
5-A-n36-m12 1318,9 2,7 5316s. 1718,6 0,2 4914s.
6-A-n37-m13 1110,6 5 4918s. 1358,8 34,5 6158s.
7-A-n37-m14 1597,9 0,5 4135s. 2113,9 2,8 3756s.
8-A-n38-m13 1154,5 0,9 5041s. 1571,1 5,1 5002s.
9-A-n39-m15 1485 8,1 4654s. 1944,8 0,9 4622s.
10-A-n39-m14 1403,9 8,6 4894s. 1906,9 0,2 5108s.
11-A-n44-m17 1693,4 10,1 4956s. 2158,2 1,2 4951s.
12-A-n45-m17 1660,3 0,1 5093s. 2184,8 5,1 5169s.
13-A-n45-m18 1890,1 5,7 4991s. 2573,2 0,7 5211s.
14-A-n46-m17 1552,2 5,4 5323s. 1980,3 38 5707s.
15-A-n48-m17 1872,4 10,8 5996s. 2397,5 3,6 6395s.
16-A-n53-m19 1806,1 11,9 7405s. 2358,2 10 6928s.
17-A-n54-m19 2052,6 13,8 7578s. 2636,8 60,8 6747s.
18-A-n55-m22 1755,3 9,5 6310s. 2352,6 9,8 6172s.
19-A-n60-m22 2263,9 17 8169s. 2969,1 34,8 7449s.
20-A-n61-m24 1793,8 9,9 6965s. 2345 42,3 7319s.
21-A-n62-m22 2532,3 19,1 8212s. 3207,2 32,2 7752s.
22-A-n63-m24 2946,9 14,6 7164s. 3918,9 22 7216s.
23-A-n63-m25 2179 8,9 6969s. 2881,1 6,9 7238s.
24-A-n64-m23 2629,1 16,8 7979s. 3261,5 13,6 7848s.
25-A-n65-m25 2214,7 16,4 7537s. 3070,9 6 7601s.
26-A-n69-m25 2056,5 11,1 8876s. 2668,1 52,9 8377s.
27-A-n80-m27 3507,2 21,5 11110s. 4524,9 21,5 9751s.
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Table 3: Results of the simulated annealing algorithm for the CVRPED-BCP using the
CVRPED+ instances

Instance l+-A-nn-mm : β = 0.4, β = 0.25 β = 0.2, β = 0.15

l+ instance id, Best Std. Avg. Best Std. Avg.
n clients, m vehicles cost dev. runtime cost dev. runtime

1+-A-n32-m16 1830,8 28,3 3087s. 2225,4 0 3565s.
2+-A-n33-m16 1428,8 0,7 4048s. 1676,9 0,4 3790s.
3+-A-n33-m14 1196 0 4330s. 1502 24,2 4604s.
4+-A-n34-m16 1596 0,01 3389s. 1993 0 3719s.
5+-A-n36-m16 1755,3 4 3928s. 2145,7 0 4178s.
6+-A-n37-m18 1379,2 8,7 5179s. 1761,2 0 4347s.
7+-A-n37-m19 1957 0 3344s. 2542,6 0 4112s.
8+-A-n38-m16 1437,4 2,2 4017s. 1846,4 2,2 4479s.
9+-A-n39-m19 1915,5 11,2 3915s. 2203,5 0 4089s.
10+-A-n39-m18 1759 4,2 4255s. 2148,1 0 4140s.
11+-A-n44-m26 2234,2 1,5 4218s. 2796,6 0,4 5698s.
12+-A-n45-m22 2165,7 3.1 4360s. 2690,8 0 4601s.
13+-A-n45-m22 2287,7 0,9 4339s. 3099,4 0 4783s.
14+-A-n46-m22 1950,4 6,7 4603s. 2690,1 0 4795s.
15+-A-n48-m22 2359,8 5,9 5742s. 2956,3 1,8 5500s.
16+-A-n53-m25 2411,2 9,4 5747s. 3199,8 0 5883s.
17+-A-n54-m24 2591 11,4 6025s. 3165,7 0 5746s.
18+-A-n55-m27 2237,1 5,1 5716s. 2803,1 0 5493s.
19+-A-n60-m27 2744,8 9,5 6224s. 3415,5 6,4 6548s.
20+-A-n61-m30 2313,4 9,1 6125s. 3059,2 0 5877s.
21+-A-n62-m31 3217,7 8,9 6814s. 4291 3,1 6276s.
22+-A-n63-m30 3833 9,7 6057s. 4942,1 4,9 6257s.
23+-A-n63-m31 2755 5,8 5757s. 3638,6 0,4 6127s.
24+-A-n64-m29 3311,2 27,9 6656s. 4123,1 1,7 6848s.
25+-A-n65-m34 2748,1 7,7 6762s. 3509,1 9 6842s.
26+-A-n69-m33 2573,4 8,5 7135s. 3300,5 41,1 7125s.
27+-A-n80-m38 4995,8 14,7 7444s. 5986,3 13,5 7612s.
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Table 4: Results of the simulated annealing algorithm for the CVRPED-BCP for the CVRPED
and CVRPED+ instances

CVRPED instances CVRPED+ instances
Instance Best cost Best cost Instance Best cost Best cost

id l β = 0.4, β = 0.25 β = 0.2, β = 0.15 id l+ β = 0.4, β = 0.25 β = 0.2, β = 0.15

1 1418,3 1850,9 1+ 1830,8 2225,4
2 1055,3 1491,6 2+ 1428,8 1676,9
3 1073,1 1480,2 3+ 1196 1502
4 1320,6 1749,1 4+ 1596 1993
5 1318,9 1718,6 5+ 1755,3 2145,7
6 1110,6 1358,8 6+ 1379,2 1761,2
7 1597,9 2113,9 7+ 1957 2542,6
8 1154,5 1571,1 8+ 1437,4 1846,4
9 1485 1944,8 9+ 1915,5 2203,5
10 1403,9 1906,9 10+ 1759 2148,1
11 1693,4 2158,2 11+ 2234,2 2796,6
12 1660,3 2184,8 12+ 2165,7 2690,8
13 1890,1 2573,2 13+ 2287,7 3099,4
14 1552,2 1980,3 14+ 1950,4 2690,1
15 1872,4 2397,5 15+ 2359,8 2956,3
16 1806,1 2358,2 16+ 2411,2 3199,8
17 2052,6 2636,8 17+ 2591 3165,7
18 1755,3 2352,6 18+ 2237,1 2803,1
19 2263,9 2969,1 19+ 2744,8 3415,5
20 1793,8 2345 20+ 2313,4 3059,2
21 2532,3 3207,2 21+ 3217,7 4291
22 2946,9 3918,9 22+ 3833 4942,1
23 2179 2881,1 23+ 2755 3638,6
24 2629,1 3261,5 24+ 3311,2 4123,1
25 2214,7 3070,9 25+ 2748,1 3509,1
26 2056,5 2668,1 26+ 2573,4 3300,5
27 3507,2 4524,9 27+ 4995,8 5986,3

best costs from Table 2 (CVRPED instances) with the bests costs from Table 3
(CVRPED+ instances), for the same instance id.

Recall that for each client i in an l instance, its MF mΘi is at least as
small as the associated MF to client i in the l+ instance, i.e., mΘi � mΘi

+ , i =
1, . . . , n. Proposition 5 (and more specifically Corollary 1) predicted an increase
in the cost of an optimal solution to the CVRPED-BCP when knowledge about
clients demands is more pessimistic. We can observe this behaviour in the
results presented in Table 4: for each pair (β, β) the best cost obtained with
the CVRPED+ instances is higher than the one obtained with the CVRPED
instances. This constitutes another experimental validation of the behaviour of
our algorithm.

4.4. Experimental study for the CVRPED-recourse

In the experiments conducted for the CVRPED-recourse, we used the same
generated CVRPED and CVRPED+ instances used for the CVRPED-BCP ex-
periments. Our results are reported in Table 5.
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The columns “Instance id l” and “Instance id l+” in this table represent
the CVRPED and the CVRPED+ instances id, respectively. Each one of these
instances was solved 30 times and the best, average and standard deviation of
the costs along with the average running times are reported in the respective
columns “Best cost”, “Avg cost”, “Stand. dev.” and “Avg. runtime” for
the CVRPED and the CVRPED+ instances, separately. In the “Penalty cost”
column for the CVRPED instances (respectively the “Penalty cost” column for
the CVRPED+ instances), the contribution of the expected penalty costs to the
overall costs of the best solutions to the CVRPED instances (respectively the
CVRPED+ instances) is provided as percentages. In the case of the CVRPED
instances, it varies between 16% to 25%. As for the CVRPED+ instances, it
varies between 11% and 23%.

Recall that for each client i in an l instance, its MF mΘi is at least as specific
as the associated MF to client i in the l+ instance, i.e., mΘi v mΘi

+ , i = 1, . . . , n.
As expected from Proposition 7 (and more specifically from Corollary 3), best
costs obtained with the CVRPED+ instances are higher than those obtained
with the CVRPED instances, which shows that our algorithm for the recourse
model exhibits experimentally also a sound behaviour.

5. Conclusions

In this article, we proposed to represent uncertainty on customer demands in
the capacitated vehicle routing problem via the theory of evidence. We tackled
this problem by generalising the most popular approaches to stochastic pro-
gramming: chance constrained programming and stochastic programming with
recourse. We obtained belief constrained programming and evidential recourse
approaches. We studied the optimal solution cost behaviour with respect to the
model parameters and customer demand ranking in the case of the belief con-
strained programming model, and with respect to customer demand specificity
in the case of the recourse model. In addition, by considering particular cases of
evidential demands, we were able to connect our models not only to stochastic
programming but also to robust optimisation. In the last part of this article,
we solved both models by a simulated annealing metaheuristic algorithm that
uses a combination of operators that aim at minimising the objective function
of the problem. We reported the results of our experiments on instances of
this difficult optimisation problem. Our experiments showed that our algorithm
behave accordingly to the theoretical results studied in this paper.

Future work will include i) comparing our evidential models to the other
models, and particularly the stochastic ones, using historical data on customer
demands in order to show empirically the advantages of our evidential mod-
els; ii) extending to the evidential framework other stochastic variations of the
CVRP, such as the CVRP with stochastic customers [28]; iii) extending our
evidential models to the case of incomplete knowledge about the dependency
between the evidential variables [21]; iv) performing a sensitivity analysis that
would allow us to identify certain “key” customers, such that better knowledge
about their demands leads to better solutions in each one of these models; and
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Table 5: Results of the simulated annealing algorithm for the CVRPED-recourse for the
CVRPED and CVRPED+ instances

CVRPED instances CVRPED+ instances
Instance Best Penalty Avg Stand. Avg. Instance Best Penalty Avg Stand. Avg.

id l cost cost cost dev. runtime id l+ cost cost cost dev. runtime
1 1750,3 16,8% 1783,9 16,1 1958s. 1+ 2252,6 18,3% 2283,5 13,2 1272s.
2 1327,5 16,2% 1353,2 13,6 1704s. 2+ 1650,6 17,7% 1676 9,6 1329s.
3 1296,1 18% 1338,8 16,4 1642s. 3+ 1490,3 16,6% 1510,6 11,3 1540s.
4 1661,9 19,8% 1698,7 24,6 1728s. 4+ 1999,6 19,7% 2044,9 18,7 1428s.
5 1670,1 24,2% 1741,9 29 2673s. 5+ 2205,3 16,9% 2247,3 18,6 1554s.
6 1391,2 20,1% 1425,8 12,5 3586s. 6+ 1697,5 14,9% 1737 13,2 1612s.
7 1895,6 24,4% 1947,3 21,2 2286s. 7+ 2561,5 17% 2593,8 17,5 1382s.
8 1493,8 16,1% 1525,6 15,9 2450s. 8+ 1769,7 16,6% 1802,9 18,9 1686s.
9 1851 21,1% 1897,6 27,4 2580s. 9+ 2319,9 19,9% 2355 20,5 1783s.
10 1715,2 22,2% 1755,6 22,9 3264s. 10+ 2099,3 20,7% 2146,3 20,8 1863s.
11 2127,8 20,7% 2216,7 25,3 2349s. 11+ 2858,5 11,8% 2889 15,5 1491s.
12 2147,1 17% 2193,7 21,1 2344s. 12+ 2667,9 18 % 2705,2 22 1808s.
13 2530,2 22,7% 2629,7 33,6 2427s. 13+ 3084,7 15,7% 3145,9 29,5 1755s.
14 1994,9 24,9% 2089,4 32,6 2948s. 14+ 2483,1 17,2% 2524,8 23,3 1950s.
15 2499,5 21,2% 2559,1 30,2 3348s. 15+ 3135,5 15,8% 3168,4 21,3 2293s.
16 2420,4 18,3% 2499,7 35 4715s. 16+ 3100 14,9% 3132,5 17,7 2294s.
17 2709,6 19,8% 2792,8 39,1 4129s. 17+ 3366,9 16,6% 3427 29,9 2572s.
18 2301,7 16,3% 2348,4 27,3 2844s. 18+ 2788,3 13,5% 2837,6 24,8 2110s.
19 3083 23,4% 3190,1 45,9 4193s. 19+ 3696,4 16% 3759,3 32,8 2706s.
20 2322,7 15,7% 2378 30,7 3398s. 20+ 2960,8 15,4% 3000,5 19,2 2484s.
21 3317,8 23,6% 3426,4 54,9 6604s. 21+ 4437,5 17,5% 4517,8 46,8 2382s.
22 4158,8 21% 4261,4 51,9 4148s. 22+ 5249,4 22,2% 5395,1 47,3 2692s.
23 2966,7 19,6% 3043,6 39,9 4217s. 23+ 3578,1 19,4% 3648,8 40,6 2727s.
24 3528,3 23,9% 3631,1 54,3 6365s. 24+ 4435,1 17,2% 4548,4 42,8 3162s.
25 2889,7 22,4% 3040 55,1 3857s. 25+ 3665,9 15,4% 3712,6 23,4 2573s.
26 2712,5 19,2% 2847,3 49,1 4461s. 26+ 3466,7 14,2% 3525,2 32,7 2748s.
27 5016,2 24,2% 5137,7 69,2 10401s. 27+ 6790,5 16,5% 6953,5 51,5 3357s.
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v) considering more general uncertainty frameworks than evidence theory to
model uncertainty on customer demands. Lower previsions [53], whose inter-
est to model uncertainty about constraint parameters in optimisation problems
has been investigated in [44], may be such a framework. In particular, in the
case of independent demands, 2-monotone lower probabilities would offer more
generality while being still tractable, thanks to the results of [19].
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[28] M. Gendreau, G. Laporte, and R. Séguin. Stochastic vehicle routing. Eu-
ropean Journal of Operations Research, 88:3–12, 1996.

[29] M. Gendreau, G. Laporte, and R. Séguin. A tabu search heuristic for the
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Appendix A. Proof of Proposition 1

Suppose mX
1 � mX

2 . For any Q, 1 ≤ Q ≤ K, we have then

BelX1 (x ∈ A1,Q) =
∑
a≤Q

mX
1 (A)

=
∑
a≤Q

∑
{R(A,B)mX

2 (B)|A ≤lo B}

=
∑
{R(A,B)mX

2 (B)|A ≤lo B, a ≤ Q}

=
∑
{R(A,B)mX

2 (B)|A ≤lo B, a ≤ Q, b ≤ Q}

+
∑
{R(A,B)mX

2 (B)|A ≤lo B, a ≤ Q, b > Q}

=
∑
{R(A,B)mX

2 (B)|A ≤lo B, b ≤ Q}

+
∑
{R(A,B)mX

2 (B)|A ≤lo B, a ≤ Q, b > Q}

=
∑
b≤Q

mX
2 (B)

∑
A≤loB

R(A,B) +
∑
b>Q

mX
2 (B)

∑
A≤loB,a≤Q

R(A,B)

= BelX2 (x ∈ A1,Q) +
∑
b>Q

mX
2 (B)

∑
A≤loB,a≤Q

R(A,B)

≥ BelX2 (x ∈ A1,Q). (A.1)

The proof is similar to show that PlX1 (x ∈ A1,Q) ≥ PlX2 (x ∈ A1,Q).
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That the implication in Equation (22) is strict is indicated by the following
counter-example. Let X = {x1, . . . , x8}, Q = 5 and mX

1 and mX
2 be two mass

functions defined as

mX
1 ({x3, x4, x5}) = 0.8, mX

1 ({x1, x3, x4}) = 0.2,

mX
2 ({x2, x3, x5}) = 0.7, mX

2 ({x6, x8}) = 0.3.

We have

BelX1 (x ∈ A1,5) = 1 ≥ BelX2 (x ∈ A1,5) = 0.7,

P lX1 (x ∈ A1,5) = 1 ≥ PlX2 (x ∈ A1,5) = 0.7.

However, to havemX
1 � mX

2 , it must be the case that the massmX
2 ({x2, x3, x5}) =

0.7 can be shared among the focal sets of mX
1 that are smaller (according to

≤lo) than {x2, x3, x5}, which is impossible since mX
1 has only one focal set

({x1, x3, x4}) that is smaller than {x2, x3, x5} and this focal set has mass 0.2.

Appendix B. Proof of Proposition 2

Let us consider a set C = {R1, . . . , Rm} composed of m routes Rk, k =
1, ...,m, such that it is not known whether this set respects the belief-constraints (26)
and (27), but it is known that it respects all the other constraints of the
CVRPED-BCP.

It is clear that for any β and β, as Q increases (starting from 1), it reaches
necessarily a value at which constraints (26) and (27) are satisfied, and thus
at which C becomes a solution to the CVRPED-BCP. Hence, for Q′ ≥ Q, the
set of solutions to the CVRPED-BCP associated with value Q is included in or
equal to the set of solutions to the CVRPED-BCP associated with value Q′.

Appendix C. Proof of Proposition 3

Let us consider a set C = {R1, . . . , Rm} composed of m routes Rk, k =
1, ...,m, such that it is not known whether this set respects the belief-constraints (26),
but it is known that it respects all the other constraints of the CVRPED-BCP,
in particular constraints (27).

It is clear that for any Q, as β increases from β to 1, it reaches necessarily
a value at which constraints (26) are satisfied, and thus at which C becomes a
solution to the CVRPED-BCP. Hence, for β′ ≥ β, the set of solutions to the
CVRPED-BCP associated with value β is included in or equal to the set of

solutions to the CVRPED-BCP associated with value β′.

Appendix D. Proof of Proposition 5

Let R denote a route containing N clients. Without lack of generality,
assume that the i-th client on R is the client i. Let mΘR∑ denote the MF defined

on ΘR := {1, 2, . . . , N ·Q} and representing the sum of the customer demands
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on R when the demand of client i is known in the form of MF mΘi , and let
mΘR∑+ denote the MF representing the sum of the customer demands on R when

the demand of client i is known in the form of MF mΘi
+ .

Using a similar proof to that of [25, Proposition 3] (with operation ∗ instan-
ciated to addition +, specialisation v replaced by ranking � and set inclusion
⊆ replaced by lattice ordering ≤lo), it is direct to show that mΘi � mΘi

+ , i =

1, . . . , N ⇒ mΘR∑ � mΘR∑+ .

Let Bel and Bel+ (resp. Pl and Pl+) denote the belief functions (resp.
plausibility functions) associated to mΘR∑ and mΘR∑+ , respectively. From Propo-

sition 1, we have then

Bel(

N∑
i=1

di ≤ Q) ≥ Bel+(

N∑
i=1

di ≤ Q), (D.1)

Pl(

N∑
i=1

di ≤ Q) ≥ Pl+(

N∑
i=1

di ≤ Q). (D.2)

The proposition follows from the fact that Equations (D.1) and (D.2) hold for
any route.
Appendix E. Proof of Proposition 6

Let Bi ⊆ Ωi := {0, 1}i−1, i = 2, . . . , N , denote the set of possible failure
situations that may occur at the i-th customer on route R, i.e.,

Bi = f (A1 × · · · ×Ai) , (E.1)

with A` := JA`;A`K, ` = 1, . . . , i.
Let hi be the function from Θi to N∗ defined by hi(θ1, . . . , θi) = qi, with qi

defined by (44). In other words, hi provides the load in the vehicle after serving
the i-th customer given that customer demands are (θ1, . . . , θi).

Remark that any ωi ∈ Bi may be obtained by several vectors (θ1, . . . , θi) ∈
A1 × · · · ×Ai. As a consequence, when it is known that the failure situation ωi

has occurred at the i-th customer, then the load in the vehicle after serving the
i-th customer is known only in the form of a set Lωi such that

Lωi =
{
hi(θ1, . . . , θi)| ∀ (θ1, . . . , θi) ∈ A1 × · · · ×Ai, f(θ1, . . . , θi) = ωi

}
.

(E.2)
Consider the tree built according to Algorithm 1 and remove all its nodes

below level i. Call Treei the resulting tree. Then, for a given leaf of Treei, by
concatenating in a vector the Boolean failure variable r` at level `, ` = 2, . . . , i,
written on the path from the root to the leaf, we obtain the binary failure
situation vector ti = (r2, r3, . . . , ri) ∈ Ωi and this leaf contains also an interval
LTti of integers representing imprecise knowledge about the vehicle load after
serving the i-th customer when ti has occurred. Besides, all the leaves of Treei
yield the subset BTi ⊆ Ωi.
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We will now show by induction that for i = 2, . . . , N , we have: Bi = BTi
and ∀ωi ∈ Bi, Lωi = LTti for ti ∈ BTi such that ti = ωi. Note that from the
definition of the addition of two intervals of integers I1 and I2, i.e., I1 + I2 =
{x1 + x2|x1 ∈ I1, x2 ∈ I2}, we have ∀x ∈ I1 + I2, ∃x1 ∈ I1, x2 ∈ I2 such that
x1 + x2 = x.

• Consider first the case i = 2, hence Ω2 = {ω2
1 , ω

2
2} with ω2

1 = (0) and
ω2

2 = (1). In such case, either B2 = {ω2
1} or B2 = {ω2

2} or B2 = {ω2
1 , ω

2
2}.

– If B2 = {ω2
1}, then it implies that A1 + A2 ≤ Q and clearly Lω2

1
=

A1 +A2. Besides, if A1 +A2 ≤ Q, then according to Algorithm 1 we
have BT2 = {ω2

1} and LTω2
1

= A1 +A2.

– If B2 = {ω2
2}, then it implies that A1 + A2 > Q and clearly Lω2

2
=

A1 +A2−Q. Besides, if A1 +A2 > Q, then according to Algorithm 1
we have BT2 = {ω2

2} and LTω2
2

= A1 +A2 −Q.

– If B2 = {ω2
1 , ω

2
2}, then it implies that ∃(θ1, θ2) ∈ A1 × A2 such that

f(θ1, θ2) = ω2
1 , and thus ∃(θ1, θ2) ∈ A1 × A2 such that θ1 + θ2 ≤ Q,

and it also implies ∃(θ1, θ2) ∈ A1 ×A2 such that f(θ1, θ2) = ω2
2 , and

thus ∃(θ1, θ2) ∈ A1 × A2 such that θ1 + θ2 > Q. In particular, it
implies that A1 + A2 ≤ Q < A1 + A2. Hence, since for θ1 + θ2 ≤ Q,
we have q2 = θ1 + θ2, and for θ1 + θ2 > Q, we have q2 = θ1 + θ2−Q,
we obtain that Lω2

1
= JA1 + A2;QK and Lω2

2
= J1;A1 + A2 − QK.

Besides, if A1 + A2 ≤ Q < A1 + A2, then according to Algorithm 1
we have BT2 = {ω2

1 , ω
2
2} and LTω2

1
= JA1 + A2;QK and LTω2

2
=

J1;A1 +A2 −QK.

• Suppose that for i < N we have: Bi = BTi and ∀ωi ∈ Bi, Lωi = LTti for
ti ∈ BTi such that ti = ωi. Let us show that it holds for i+ 1.

From the preceding assumption, we have ∀ωi = (ri1, . . . , r
i
i) ∈ Bi that Lωi

is the interval LTti , i.e., Lωi = JLωi ;LωiK = JLTti ;LTtiK for ti ∈ BTi such

that ti = ωi. In addition, we have ∀ωi = (ri1, . . . , r
i
i) ∈ Bi:

– Either Lωi +Ai+1 ≤ Q, in which case the failure situation ωi at the
i-th customer will induce a failure situation ωi+1 ∈ Bi+1 at the i+1-
th customer such that ωi+1 = (ri1, . . . , r

i
i, 0) and Lωi+1 = Lωi +Ai+1.

In addition, Lωi + Ai+1 ≤ Q is equivalent to LTti + Ai+1 ≤ Q, in
which case the leaf of Treei associated to ti will induce according to
Algorithm 1 the leaf of Treei+1 with associated vector ti+1 = ωi+1

and interval LTti+1 = LTti +Ai+1.

– Or Lωi +Ai+1 > Q, in which case the failure situation ωi at the i-th

customer will induce a failure situation ωi+1 ∈ Bi+1 at the i + 1-th
customer such that ωi+1 = (ri1, . . . , r

i
i, 1) and Lωi+1 = Lωi +Ai+1−Q.

In addition, Lωi + Ai+1 > Q is equivalent to LTti + Ai+1 > Q, in

which case the leaf of Treei associated to ti will induce according to
Algorithm 1 the leaf of Treei+1 with associated vector ti+1 = ωi+1

and interval LTti+1 = LTti +Ai+1 −Q.

44



– Or Lωi +Ai+1 ≤ Q < Lωi +Ai+1, in which case the failure situation

ωi at the i-th customer will induce a failure situation ωi+1
L ∈ Bi+1

at the i+ 1-th customer such that ωi+1
L = (ri1, . . . , r

i
i, 0) and Lωi+1

L
=

JLωi +Ai+1;QK since for qi+θi+1 ≤ Q we have qi+1 = qi+θi+1. It will

also induce a failure situation ωi+1
R ∈ Bi+1 at the i + 1-th customer

such that ωi+1
R = (ri1, . . . , r

i
i, 1) and Lωi+1

R
= J1;Lωi + Ai+1 − QK

since for qi + θi+1 > Q we have qi+1 = qi + θi+1 − Q. In addition,
Lωi + Ai+1 ≤ Q < Lωi + Ai+1 is equivalent to Lti + Ai+1 ≤ Q <

Lti +Ai+1, in which case the leaf of Treei associated to ti will induce
according to Algorithm 1 the leaf of Treei+1 with associated vector
ti+1
L = ωi+1

L and interval LTti+1
L

= JLTti + Ai+1;QK. It will also

induce the leaf of Treei+1 with associated vector ti+1
R = ωi+1

R and
interval LTti+1

R
= J1;LTti +Ai+1 −QK.

Appendix F. Proof of Proposition 7

The proof of Proposition 7 relies on the following lemma.
Lemma 1. Let mΩ and m′Ω be two MF representing uncertainty about the
recourses on a given route R, such that mΩ v m′Ω. Let C∗e(R) and C ′∗e (R)
denote the upper expected costs of R under mΩ and m′Ω, respectively. We have
C∗e(R) ≤ C ′∗e (R).

Proof. Let C∗p(R) and C ′∗p (R) denote the upper expected penalty costs of some
route R, under mΩ and m′Ω (denoted for simplicity m and m′ in this proof),
respectively.

We have

C ′∗p (R) =
∑
B⊆Ω

m′(B) max
ω∈B

g(ω), (F.1)

and

C∗p(R) =
∑
A⊆Ω

m(A) max
ω∈A

g(ω). (F.2)

Since m v m′,

C∗p(R) =
∑
A⊆Ω

∑
B⊆Ω

S(A,B)m′(B)

max
ω∈A

g(ω)


=

∑
B⊆Ω

m′(B)

∑
A⊆Ω

S(A,B) max
ω∈A

g(ω)

 . (F.3)
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Since S(A,B) = 0,∀A 6⊆ B, we can replace the condition of the second sum
from A ⊆ Ω to A ⊆ B:

C∗p(R) =
∑
B⊆Ω

m′(B)

∑
A⊆B

S(A,B) max
ω∈A

g(ω)

 . (F.4)

In addition, for any A,B ⊆ Ω such that A ⊆ B, we have

max
ω∈A

g(ω) ≤ max
ω∈B

g(ω),

hence

C∗p(R) =
∑
B⊆Ω

m′(B)

∑
A⊆B

S(A,B) max
ω∈A

g(ω)


≤
∑
B⊆Ω

m′(B)

∑
A⊆B

S(A,B) max
ω∈B

g(ω)


=
∑
B⊆Ω

m′(B) max
ω∈B

g(ω)

= C ′P
∗
(R), (F.5)

where we used the fact that S is stochastic so that max
ω∈B

g(ω) =
∑
A⊆B

S(A,B) max
ω∈B

g(ω)

for any B ⊆ Ω. Using C ′∗p (R) ≥ C∗p(R) we obtain

C ′∗p (R) + C(R) ≥ C∗p(R) + C(R) ,

which means
C ′∗e (R) ≥ C∗e(R) .

Proposition 7 may then be proved as follows.
Let R denote a route containing N clients. Without lack of generality, as-

sume that the i-th client on R is the client i. Let mΩ denote the MF representing
uncertainty about recourses on R when the demand of client i, i = 1, . . . , N is
known in the form of MF mΘi , and let mΩ

? denote the MF representing uncer-
tainty about recourses on R when the demand of client i is known in the form
of MF mΘi

? .
Using a similar proof to that of [25, Proposition 3] (with operation ∗ replaced

by function f defined in Section 3.2.2), it is direct to show that mΘi v mΘi
? , i =

1, . . . , n⇒ mΩ v mΩ
? . From Lemma 1, we obtain then C∗e(R) ≤ C?∗e (R).

Considering that the optimal solution with mass functions mΘi
? consists of

a set S of routes {R1, . . . , Rm}, we have then C?∗e (Rk) ≥ C∗e(Rk) for each
k ∈ {1, . . . ,m}, which yields

Ĉ?Rec =

m∑
k=1

C?∗e (Rk) ≥
m∑
k=1

C∗e(Rk) ≥ ĈRec. (F.6)
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Appendix G. The simulated annealing algorithm for the CVRPED

The pseudo-code of our simulated annealing algorithm is provided by Algo-
rithm 2. It starts by generating an initial configuration (candidate solution)
C using the initial config(...) routine, when the initial temperature of the
system T is at its highest value. Afterwards, T is progressively decreased until
reaching the freezing temperature freez, while a sequence of iterations tot iter
are performed for each T . Throughout each iteration iter, a neighbourhood
configuration C∗ of the current configuration C is generated, and the variation
in the cost ∆cost is computed. In other words, each configuration represents
an intermediate solution that has a different cost which is computed using the
cost method, and ∆cost is equal to the difference between the new cost of the
neighbourhood configuration C∗cost and the current cost of the current config-
uration Ccost. If the cost decreases then the move to the new cost is accepted
(lines 16 – 18).

However, if ∆cost is positive then the move is accepted or rejected with a

probability that equals e−
∆cost

T . Effectively, the probability of accepting inferior
solutions is a function of the temperature T and the change in cost ∆cost. We
repeat this whole process for a total number of trials tot tr and the algorithm
finally returns the best configuration ever visited.

The set of parameters controlling Algorithm 2 were experimentally deter-
mined using Augerat set A instances of the CVRP [46], in which vertices coor-
dinates were randomly constructed [3]. Specifically, the initial temperature T
was set to 5000 and was decreased by a temperature reduction multiplier κ that
was set to 0.82 until reaching a freezing temperature freez that equals 1. The
total number of iterations tot iter was regulated to 30000, while the total num-
ber of trials of the algorithm tot tr was determined to be 5. The results with
our algorithm varied between 1% and 12% from the optimal solutions of the
CVRP, with an average running time under 30 minutes, for all instances. This
algorithm is an adaptation of the algorithm introduced in [32] for the CVRP.

Let us remark that a configuration in Algorithm 2 is a set of routes that
can be generated either by the initial config(...) or the neighbourhood

configuration(...) routines. Besides, the cost(...) routine evaluates the
objective value of the configuration. All these routines depend on a “modelling
technique parameter” MD that specifies whether we are solving the CVPRED-
BCP or the CVRPED-recourse model. In particular, if MD = “BCP ′′ the
cost(...) routine evaluates the objective value of the configuration in the
BCP model. The objective function is thus the (classical) total travelled distance
of the routes (1). If MD=“recourse”, the cost(...) routine corresponds to
using the recourse objective function, that aims at minimising the total upper
expected cost (42). The descriptions of the routines initial config(...) and
neighbourhood configuration(...) given the value of parameter MD, are
provided in Section 4.1.
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Algorithm 2 Simulated annealing algorithm

Input: initial temperature T , temperature reduction multiplier κ, freezing tem-
perature freez, total number of iterations tot iter, total number of trials
tot tr, modelling technique MD (BCP or recourse)

Output: Best solution ever visited BestC
1: Bestcost =∞
2: for tr = 0 to tot tr do
3: if tr == 0 then
4: C = initial config(greedy, MD) . greedy generation
5: else
6: C = initial config(random, MD) . random generation
7: end if
8: Ccost =cost(C, MD)
9: TBestC = C

10: TBestcost = Ccost
11: repeat
12: for iter = 0 to tot iter do
13: C∗ = neighbourhood configuration(C, MD)
14: C∗cost = cost(C∗,MD)
15: ∆cost = C∗cost − Ccost
16: if (∆cost < 0) then
17: C = C∗

18: Ccost = C∗cost
19: if C∗cost < TBestcost then
20: TBestC = C∗

21: TBestcost = C∗cost
22: end if
23: else if rnd ≤ e−

∆cost
T then . rnd is a random number in [0, 1]

24: C = C∗

25: Ccost = C∗cost
26: end if
27: end for
28: T = κ · T
29: until (T == freez)
30: if (TBestcost < Bestcost) then
31: BestC = TBestC
32: Bestcost = TBestcost
33: end if
34: end for
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Appendix H. Examples for the neighbourhood operators Fix minimum

and Replace highest average

Example 7. (Fix minimum) Suppose configuration C consists of the set of three
routes C = {(0, 3, 6, 10, 0) , (0, 1, 5, 8, 4, 9, 7, 0) , (0, 2, 0)}. Assume that the small-
est distances between consecutive clients are those between clients < 3, 6 >,
< 6, 10 >, < 1, 5 >, < 4, 9 > and < 7, 0 >. This means that customers 3, 6, 1, 4
and 7 cannot be removed from their routes by the fix minimum operator. Con-
sequently, fix minimum selects five random customers excluding 3, 6, 1, 4, 7 and
the depot. For instance customer 5 is selected and removed from the second
route in C and inserted randomly in one of the three available routes in C, while
respecting all problem constraints. After selecting the new route for client 5, it
is inserted at the position with the resulting smallest distance to client 5. We
repeat the same process to move the four other random customers which in this
example cannot be other than customers 2, 5, 8, 9 and 10.

Example 8. (Replace highest average) Suppose a configuration C that con-
sists of the set of routes C = {(0, 1, 3, 8, 0) , (0, 2, 5, 4, 9, 10, 0) , (0, 6, 7, 0)}. Sup-
pose 1, 8, 5, 9 and 7 are the clients having the five highest average distances (sep-
arating each one of these clients from its neighbours). Then, these clients are re-
moved from their routes, and we will have C = {(0, 3, 0) , (0, 2, 4, 10, 0) , (0, 6, 0)}.
Afterwards, each removed client is inserted randomly in one of the available
routes. The position where to insert a customer is chosen, such that: i) the
problem constraints are respected; and ii) the new position of that customer on
the chosen route has the smallest average distance, if compared to all other pos-
sible positions of this client on the chosen route. For instance, suppose the first
route in C was chosen randomly for client 1. We know that inserting client 1
on that route does not violate the belief-constraints, and it can be inserted either
before client 3 or right after client 3. Suppose also that inserting client 1 right
after client 3 has a smallest average distance, than if client 1 was inserted right
before client 3. Then, client 1 is inserted right after client 3. This same process
is repeated for the remaining clients 8, 5, 9 and 7.
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