
Evidential joint calibration of binary SVM
classifiers using logistic regression

Pauline Minary1,2, Frédéric Pichon1, David Mercier1, Eric Lefevre1, and
Benjamin Droit2

1Univ. Artois, EA 3926,
Laboratoire de Génie Informatique et d’Automatique de l’Artois (LGI2A),
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Abstract. In a context of multiple classifiers, a calibration step based
on logistic regression is usually used to independently transform each
classifier output into a probability distribution, to be then able to com-
bine them. This calibration has been recently refined, using the evidence
theory, to better handle uncertainties. In this paper, we propose to use
this logistic-based calibration in a multivariable scenario, i.e., to consider
jointly all the outputs returned by the classifiers, and to extend this ap-
proach to the evidential framework. Our evidential approach was tested
on generated and real datasets and presents several advantages over the
probabilistic version.

Keywords: Belief functions, Information fusion, Evidential calibration.

1 Introduction

Using several classifiers to obtain different information on a given object and
combining their outputs is a means to obtain better classification performance.
These classifiers may be trained with different data or may not rely on the
same training models. Thus, their outputs may not be of the same type or
not scaled with each other. To be able to combine them, they first have to be
made comparable: a technique called calibration is usually applied, enabling to
transform a classifier output into a probability. One of the most commonly used
calibration is based on logistic regression [8].

Recently, Xu et al. [11] proposed a refinement of this calibration within a
framework for reasoning under uncertainty called evidence theory [9, 10]. This
theory models more precisely the uncertainties inherent to such calibration pro-
cess and thus enables to prevent an over-fitting issue that may appear, especially
when few training data are available. Thus, given a single classifier returning a
confidence score after observing a given object, Xu et al.’s approach transforms
this score into a belief function.
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There exists a multivariable version of the logistic regression, called the mul-
tiple logistic regression [5], where the technique is defined with more than one
input. If we apply this approach to the vector of scores returned by the classifiers
for a given object, we can obtain a joint calibration, which returns a probabil-
ity. Yet, this technique is also prone to the uncertainty problem. Within this
scope, we propose to use the evidential extension of calibration proposed by Xu
et al., and to apply it to the calibration based on the multiple logistic regression.
Thus, for a given object, our proposed approach transforms the vector of scores
returned by the classifiers into a belief function.

This paper is organized as follows. First, Section 2 recalls the necessary back-
ground on evidence theory. Then, Section 3 exposes the probabilistic calibration
based on the multiple logistic regression and the extension to the evidential
framework that we propose. In Section 4, the proposed approach and its prob-
abilistic version are compared. Finally, conclusion and perspectives are given in
Section 5.

2 Evidence theory

In this section, basic notions of the evidence theory are first exposed in Sec-
tion 2.1. Applications of this theory to inference and prediction, which are useful
to define calibration in the evidential framework, are addressed in Section 2.2.

2.1 Basic notions

The theory of evidence is a framework for reasoning under uncertainty. Let Ω
be a finite set called the frame of discernment, which contains all the possible
answers to a given question of interest Q. In this theory, uncertainty with respect
to the answer to Q is represented using a Mass Function (MF) defined as a
mapping mΩ : 2Ω → [0, 1] that satisfies

∑
A⊆Ωm

Ω (A) = 1 and mΩ(∅) = 0. The

quantity mΩ(A) corresponds to the share of belief that supports the claim that
the answer is contained in A ⊆ Ω and nothing more specific. Any subset A of Ω
such that mΩ(A) > 0 is called a focal set of mΩ . When the focal sets are nested,
mΩ is said to be consonant. A mass function can be equivalently represented by
the belief and plausibility functions, respectively defined by

BelΩ(A) =
∑
B⊆A

mΩ(B), P lΩ(A) =
∑

B∩A6=∅

mΩ(B), ∀A ⊆ Ω. (1)

The plausibility function restricted to singletons is called the contour function,
denoted plΩ and defined by plΩ(ω) = PlΩ({ω}),∀ω ∈ Ω. When a mass function
is consonant, the plausibility function can be recovered from its contour function
with PlΩ(A) = sup

ω∈A
plΩ(ω), ∀A ⊆ Ω.

Different decision strategies exist to make a decision about the true answer
to Q, given a MF mΩ on this answer [4]. In particular, the answer having the
smallest so-called upper or lower expected costs may be selected. When the set
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of focal elements is reduced to singletons and Ω, and when the costs are taken
equal to 0 if the answer is correct and 1 otherwise, the upper and lower expected
costs of some answer ω ∈ Ω are respectively defined as R∗(ω) = 1−mΩ({ω}) and
R∗(ω) = 1 −mΩ({ω}) −mΩ(Ω). Choosing the answer minimizing minimizing
the lower (resp. upper) expected costs is called the optimistic (resp. pessimistic)
strategy. To avoid making risky decisions, when the expected costs are high, a
reject decision can be introduced: we define Rrej ∈ [0, 1], and the reject decision
is made when Rrej is lower than the other expected costs.

2.2 Statistical inference and forecasting

The evidence theory can be used for inference and forecasting. Consider θ ∈ Θ an
unknown parameter, x ∈ X some observed data and fθ(x) the density function
generating the data. Statistical inference consists in making statements about
θ after observing the data x. Shafer [9] proposed to represent the knowledge
about θ by a consonant belief function BelΘx based on the likelihood function
Lx : θ → fθ(x), whose contour function is the normalized likelihood function:

plΘx (θ) =
Lx(θ)

sup
θ′∈Θ

Lx(θ′)
, ∀θ ∈ Θ. (2)

Suppose now that we have some knowledge about θ after observing some
data x, in the form of a contour function plΘx . The aim of forecasting is to make
statements about a not yet observed data Y ∈ Y, whose conditional distribution
given X = x depends on θ. A solution consists in using the sampling model
of Dempster [3] to deduce a belief function on Y [6, 7]. This model proposes to
express Y as a function of the parameter θ and some unobserved variable, whose
distribution is independent of θ.

Let us consider an important particular case. Assume that Y ∈ Y = {0, 1}
is a random variable with a Bernoulli distribution. In that case, Xu et al. [11]
showed, by applying inference and forecasting, that we have

BelYx ({1}) = θ̂ −
∫ θ̂

0

plΘx (u)du, P lYx ({1}) = θ̂ +

∫ 1

θ̂

plΘx (u)du, (3)

where θ̂ maximizes plΘx .

3 An evidential joint calibration approach

Assume that after observing an object which belongs either to class 0 or 1,
a SVM classifier returns a confidence score s ∈ R. To learn how to interpret
what this score represents with respect to the true label y ∈ Y = {0, 1} of the
object, a step called calibration may be performed. In particular, the one based
on logistic regression is commonly used [8]. It aims to estimate the probability
distribution pY(·|s) and relies on a training set. Yet, the less training samples are
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available, the more the estimated probabilities are uncertain. To manage these
uncertainties, Xu et al. proposed to refine this calibration using the theory of
evidence [11].

We propose to use the multiple version of the logistic regression [5] and to
apply it to the outputs of multiple classifiers, i.e., to perform a joint calibration
of the scores provided by J binary SVM classifiers. It relies on a training set
defined by X = {(S11, ..., SJ1, Y1), ..., (S1n, ..., SJn, Yn)}, where Sji corresponds
to the score given by the jth classifier for the ith test sample, and Yi its true
label. Given a vector of scores s = (s1, ..., sJ), with sj the score returned by
the jth classifier, the calibration based on the multiple logistic regression can be
defined by

PY(y = 1|s) ≈ hs(σ) =
1

1 + exp(σ0 + σ1s1 + σ2s2 + ...+ σJsJ)
, (4)

where the parameter σ= {σ0, ..., σJ} ∈ RJ+1 is obtained by maximizing the
likelihood function L, defined by

L(σ) =

n∏
i=1

pYi
i (1− pi)1−Yi , with pi =

1

1 + exp(σ0 + σ1S1 + ...+ σJSJ)
. (5)

To better handle the uncertainties, we propose to extend this approach to
the evidential framework by following the same likelihood-based reasoning as in
[11]. Calibration of a given vector of scores s based on logistic regression can be
seen as a prediction problem of a Bernoulli variable Y with parameter θ, where
θ = hs(σ). A belief function BelY(·|s) can be derived from the contour function
plΘX (·|s) using Eq. (3). Following Xu et al. [11], this contour function can be
computed from PlΣX , which is the plausibility function of plΣX defined by

plΣX (σ) =
L(σ)

L(σ̂)
, ∀σ ∈ Σ, (6)

with σ̂ = (σ̂0, ..., σ̂J) the Maximum Likelihood Estimate (MLE) of σ and L the
likelihood defined in Eq. (5). As θ = hs(σ), we have

plΘX (θ|s) =

{
0 if θ ∈ {0, 1},
P lΣX (h−1s (θ)) otherwise,

(7)

with

h−1s (θ) =

{
(σ0, σ1, ..., σJ) ∈ Σ| 1

1 + exp(σ0 + σ1s1 + ...+ σJsJ)
= θ

}
, (8)

=
{

(σ0, σ1, ..., σJ) ∈ Σ|σ0 = ln(θ−1 − 1)− σ1s1 − ...− σJsJ
}
. (9)

Thus, Eqs. (7) and (9) yield the following contour function

plΘX (θ|s) = sup
σ1,...,σJ∈R

plΣX ′(ln(θ−1−1)−σ1s1−σ2s2− ...−σJsJ , σ1, ..., σJ), (10)

for all θ ∈ [0, 1]. The vector of parameters (σ1, σ2, ..., σJ) which maximizes plΣX
can be approximated using an iterative maximization algorithm. The computa-
tional complexity of such algorithm is O(nJ) per iteration.
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4 Experiments

We simulated a binary dataset composed of randomly generated instance vectors
from a multivariate normal distribution, composed of two features, with means
µ0 = (−1, 0) in class 0 and µ1 = (1, 1) in class 1, and with a covariance matrix

equals to

[
1 0.5

0.5 1

]
for both classes. The possibility of deciding to reject a test

sample was introduced, and we used both pessimistic and optimistic strategies for
the evidential approach. We generated a set of 290 training samples: three SVM
classifiers were trained, using the LIBSVM library [2], with three non-overlapping
subset of 30 training samples of this set, and our evidential joint calibration
was trained with the remaining 200 samples. Then, the same experiment was
performed but with 15 examples to train the approach. The decision frontiers
in both cases are illustrated in Figure 1, for Rrej = 0.2. As it can be seen, the

(a) Approach trained with 200 examples (b) Approach trained with 15 examples

Fig. 1: Decision frontiers in feature space of the joint calibration trained with
200 (1a) and 15 (1b) training examples, for Rrej = 0.2.

approach based on the optimistic strategy tends to decide more, hence to reject
less, the test samples than the two others and it is the exact opposite for the
pessimistic strategy. Furthermore, the frontiers are a lot more distant from each
other when there are less examples to train the approach (Figure (1b)), i.e.,
when there are more uncertainties. The probabilistic calibration only yields one
frontier so the impact of the uncertainties is not visible. Thus, evidential joint
approaches better reflect the uncertainties than the probabilistic one, and using
an evidential approach enables to choose between a strategy which decide more
often and reject less test samples, or the opposite.

With the same set repartition, we calculated the error rate and accuracy rates
for 100 test samples and Rrej = 0.2. Accuracy rate corresponds to the number
of correctly classified objects over the number of classified objects, i.e., not over
the total number of test samples as some of them are rejected. The process was
repeated for 100 rounds of random partitioning. The obtained points are more
distant from each other when few training examples are available (Figure 2). This
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interval reflects the uncertainties as it is larger when they are more important.
This information cannot be obtained with the probabilistic approach, which is
represented by only one point.

(a) Approach trained with 200 examples (b) Approach trained with 15 examples

Fig. 2: Error and accuracy rates for Rrej = 0.2 and with 200 (2a) and 15 (2b)
training examples.

Furthermore, we performed the same experiment with Rrej varying from 0 to
1, on four datasets (Australian, Diabetes, Heart, Ionosphere) of UCI repository [1]
and on the simulated dataset. The classifiers were still trained on non-overlapping
subsets of 30 examples, either for simulated or real data. Our joint calibration
was trained with 45 then 15 samples. Figure 3 shows the results obtained for the
simulated dataset; those obtained for the real datasets are similar. For a given

(a) Simulated data – 45 training examples (b) Simulated data – 15 training examples

Fig. 3: Error and accuracy rates with 45 (left) and 15 training examples (right).

error rate, the results obtained with the pessimistic strategy has a higher (or
equal) accuracy rate than the probabilistic one when few training examples are
available (right column). We may notice that these two points are obtained with
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different Rrej , as seen in the previous experiment. Furthermore, when there are
more training examples (left column), the obtained results become similar for
the probabilistic and evidential approaches.

Finally, we compared our evidential joint approach to Xu et al.’s approach
[11], which independently calibrate the scores given by single classifier and com-
bine them with Dempster’s rule [9]. We performed the same experiment as the
first one detailed in [11], where the training set size for the third classifier was
varying. The training of our joint calibration was performed by concatenating the
calibration training subsets of the three classifiers. The joint proposed approach
presents lower error rates than Xu et al.’s approach on the simulated dataset as
well as on the real data (results cannot be shown due to space limitations).

5 Conclusion

In this paper, an evidential joint calibration based on logistic regression was
proposed. Logistic regression is commonly used to calibrate the scores of a single
classifier and we used its multiple version to take into account together the scores
returned by multiple classifiers for an object. The application of evidence theory
enables to better handle the process uncertainties than the probabilistic version.

We only studied the calibration using logistic regression but the same rea-
soning can be applied to other calibration techniques. Finally, an extension of
our approach to multiclass problem could also be considered in future works.
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