Corrigendum to "Belief Functions Contextual Discounting and Canonical Decompositions" [International Journal of Approximate Reasoning 53 (2012) 146–158]

David Mercier, Frédéric Pichon, Éric Lefèvre

Univ. Artois, EA 3926, Laboratoire de Génie Informatique et d'Automatique de l'Artois (LGI2A), Béthune, F-62400, France

Abstract

Proposition 4 and Theorem 1 of the article "Belief Functions Contextual Discounting and Canonical Decompositions" [International Journal of Approximate Reasoning 53 (2012) 146–158] provide an erroneous result. We give here the true result with a correct proof.

Keywords: Belief functions, Contextual Discounting.

We hereby correct Proposition 4 and Theorem 1 in [2], which contained erroneous results.

Let us first recall the problem. A source S of information provides to agent Ag a piece of information represented by a mass function m_S^{Ω} (with $\Omega = \{\omega_1, \ldots, \omega_K\}$), simply denoted by m in this corrigendum. Let \mathcal{A} be a non empty set of subsets of Ω called contexts. Agent Ag owns a metaknowledge regarding the reliability of S conditionally on each set $A \in \mathcal{A}$. Formally, for all $A \in \mathcal{A}$, we suppose that

$$\begin{cases}
 m_{Ag}^{\mathcal{R}}[A](\{R\}) &= 1 - \alpha_A = \beta_A \\
 m_{Ag}^{\mathcal{R}}[A](\mathcal{R}) &= \alpha_A ,
\end{cases}$$
(1)

where $\alpha_A \in [0, 1]$ and $\mathcal{R} = \{R, NR\}$ (R meaning the source is reliable, NR otherwise), and the notation $m[\cdot]$ denotes conditioning.

With the same reasoning as in [1] (where \mathcal{A} was supposed to form a partition of Ω), the knowledge m_{Ag}^{Ω} held by agent Ag on Ω , based on the in-

 $Email\ addresses:\ {\tt david.mercier@univ-artois.fr}\ ({\tt David\ Mercier}), \\ {\tt frederic.pichon@univ-artois.fr}\ ({\tt Fr\'ed\'eric\ Pichon}),\ {\tt eric.lefevre@univ-artois.fr}\ ({\tt \'Eric\ Lefevre})$

formation m provided by S and his metaknowledge regarding S represented by (1) for all $A \in \mathcal{A}$, can be obtained by the following computation,

$$\left(m^{\Omega}[\{R\}]^{\uparrow\Omega\times\mathcal{R}} \bigcirc_{A\in\mathcal{A}} m^{\mathcal{R}}[A]^{\uparrow\Omega\times\mathcal{R}}\right)^{\downarrow\Omega} , \qquad (2)$$

where symbol \uparrow and \downarrow denote, respectively, the deconditioning and projection operations, and $m^{\Omega}[\{R\}] = m$.

It is stated in [2] that, for $\mathcal{A} = 2^{\Omega}$ (Proposition 4) and more generally for any set \mathcal{A} of contexts (Theorem 1), Equation (2) is equivalent to

$$m \bigcirc (\bigcirc_{A \in A} A_{\beta_A})$$
 (3)

This statement is incorrect. In the general case, for any non empty \mathcal{A} , Equation (2) is equivalent to

$$m \bigcirc \left(\bigcirc_{A \in \mathcal{A}} \overline{A}^{\alpha_A} \right) ,$$
 (4)

as shown by the following proof, which corrects Theorem 1 from [2]. The fact that, in general, (4) is not equivalent to (3) (and particularly when $\mathcal{A}=2^{\Omega}$), and therefore (2) is not equivalent in general to (3), is shown below by Example 1.

Proof 1. Let us denote by A_i , $i \in I = \{1, ..., n\}$, the contexts present in A, and let us write β_{A_i} simply by β_i , for all $i \in I$. For all $A_i \in A$, the deconditioning of $m^{\mathcal{R}}[A_i]$ over $\Omega \times \mathcal{R}$ is given by

$$m^{\mathcal{R}}[A_i]^{\uparrow\Omega\times\mathcal{R}}(A_i\times\{R\}\cup\overline{A_i}\times\mathcal{R}) = \beta_i,$$
 (5a)
 $m^{\mathcal{R}}[A_i]^{\uparrow\Omega\times\mathcal{R}}(\Omega\times\mathcal{R}) = \alpha_i.$ (5b)

Moreover, for all $(A_i, A_j) \in A^2$, such that $j \neq i$,

$$(A_{i} \times \{R\} \cup \overline{A_{i}} \times \mathcal{R}) \cap (A_{j} \times \{R\} \cup \overline{A_{j}} \times \mathcal{R})$$

$$= (A_{i} \cap A_{j}) \times \{R\} \cup (A_{i} \cap \overline{A_{j}}) \times \{R\} \cup (\overline{A_{i}} \cap A_{j}) \times \{R\} \cup (\overline{A_{i} \cup A_{j}}) \times \mathcal{R}$$

$$= (A_{i} \cup A_{j}) \times \{R\} \cup (\overline{A_{i} \cup A_{j}}) \times \mathcal{R}.$$

With A composed of two elements denoted by A_i and A_j , we then have

$$\begin{cases} (m^{\mathcal{R}}[A_i]^{\uparrow\Omega\times\mathcal{R}} \odot m^{\mathcal{R}}[A_j]^{\uparrow\Omega\times\mathcal{R}})((A_i\cup A_j)\times\{R\}\cup\overline{(A_i\cup A_j)}\times\mathcal{R}) &=& \beta_i\beta_j\\ (m^{\mathcal{R}}[A_i]^{\uparrow\Omega\times\mathcal{R}} \odot m^{\mathcal{R}}[A_j]^{\uparrow\Omega\times\mathcal{R}})(A_i\times\{R\}\cup\overline{A_i}\times\mathcal{R}) &=& \beta_i\alpha_j\\ (m^{\mathcal{R}}[A_i]^{\uparrow\Omega\times\mathcal{R}} \odot m^{\mathcal{R}}[A_j]^{\uparrow\Omega\times\mathcal{R}})(A_j\times\{R\}\cup\overline{A_j}\times\mathcal{R}) &=& \alpha_i\beta_j\\ (m^{\mathcal{R}}[A_i]^{\uparrow\Omega\times\mathcal{R}} \odot m^{\mathcal{R}}[A_j]^{\uparrow\Omega\times\mathcal{R}})(\Omega\times\mathcal{R}) &=& \alpha_i\alpha_j \end{cases}$$

In other words, all the focal elements of $\bigcap_{A\in\mathcal{A}}m^{\mathcal{R}}[A]^{\pitchfork\Omega\times\mathcal{R}}$ are the elements $C\times\{R\}\cup\overline{C}\times\mathcal{R}$ with C composed of a union of elements A_i in A, I' being the set of indices of the A_i 's, which means with $C=\bigcup_{i\in I'\subseteq I}A_i$. Moreover, each focal element has a mass equal to $\prod_{i\in I'}\beta_i\prod_{j\in I\setminus I'}\alpha_j$. Let us note that this latter result is also true if A is composed of one element $A\subseteq\Omega$ (directly from Equations (5)).

By induction, we can show that this property remains true with A composed of n contexts A_i , $i \in I = \{1, ..., n\}$. Indeed, let us suppose the property true with A composed of n-1 contexts A_i , $i \in I = \{1, ..., n-1\}$, we then have for all focal elements $C \times \{R\} \cup \overline{C} \times \mathcal{R}$ of $\bigcap_{i \in I} m^{\mathcal{R}}[A_i]^{\uparrow \Omega \times \mathcal{R}}$, with $C = \bigcup_{i \in I' \subseteq I} A_i$,

$$(\bigcirc_{i \in I} m^{\mathcal{R}} [A_i]^{\uparrow \Omega \times \mathcal{R}} \bigcirc m^{\mathcal{R}} [A_n]^{\uparrow \Omega \times \mathcal{R}}) ((C \cup A_n) \times \{R\} \cup \overline{(C \cup A_n)} \times \mathcal{R})$$

$$= \beta_n \prod_{i \in I'} \beta_i \prod_{j \in I \setminus I'} \alpha_j = \prod_{i \in I' \cup \{n\}} \beta_i \prod_{j \in (I \cup \{n\}) \setminus (I' \cup \{n\})} \alpha_j ,$$

and

$$\begin{split} (\odot_{i \in I} m^{\mathcal{R}} [A_i]^{\uparrow \Omega \times \mathcal{R}} \odot m^{\mathcal{R}} [A_n]^{\uparrow \Omega \times \mathcal{R}}) (C \times \{R\} \cup \overline{C} \times \mathcal{R}) \\ &= \alpha_n \prod_{i \in I'} \beta_i \prod_{j \in I \setminus I'} \alpha_j = \prod_{i \in I'} \beta_i \prod_{j \in (I \cup \{n\}) \setminus I'} \alpha_j \ , \end{split}$$

which means that focal elements of $\bigcirc_{i\in\{1,\ldots,n-1\}} m^{\mathcal{R}}[A_i]^{\uparrow\Omega\times\mathcal{R}} \bigcirc m^{\mathcal{R}}[A_n]^{\uparrow\Omega\times\mathcal{R}}$ are also of the form $C\times\{R\}\cup\overline{C}\times\mathcal{R}$, with $C=\cup_{i\in I'\subseteq I}A_i$, $I=\{1,\ldots,n\}$, $A_i\in\mathcal{A}$, and have for mass: $\prod_{i\in I'}\beta_i\prod_{j\in I\setminus I'}\alpha_j$.

Besides, for all $B \subseteq \Omega$,

$$m^{\Omega}[\{R\}]^{\uparrow\Omega\times\mathcal{R}}(B\times\{R\}\cup\Omega\times\{NR\})=m(B)$$
,

and, for all $B \subseteq \Omega$, for all $C = \bigcup_{i \in I' \subseteq I} A_i$,

$$(C\times \{R\}\cup \overline{C}\times \mathcal{R})\cap (B\times \{R\}\cup \Omega\times \{NR\})=B\times \{R\}\cup \overline{C}\times \{NR\}\ .$$

Therefore, after the projection on Ω , $(m^{\Omega}[\{R\}]^{\uparrow\Omega\times\mathcal{R}} \odot_{A\in\mathcal{A}} m^{\mathcal{R}}[A]^{\uparrow\Omega\times\mathcal{R}})^{\downarrow\Omega}$ consists in transferring a part $\prod_{i\in I'} \beta_i \prod_{j\in I\setminus I'} \alpha_j$ of each mass m(B), $B\subseteq \Omega$, from B to $B\cup \overline{C}$, for all $C=\bigcup_{i\in I'\subseteq I} A_i$.

On the other hand, $m \cup (\bigcap_{A \in \mathcal{A}} \overline{A}^{\alpha_A})$ can be written as

$$m \bigcirc \left(\bigcirc_{i \in I} \overline{A_i}^{\alpha_i} \right) = m \bigcirc \left(\bigcirc_{i \in I} \left\{ \begin{matrix} \Omega & \mapsto & \alpha_i \\ \overline{A_i} & \mapsto & \beta_i \end{matrix} \right. \right) \ .$$

As for all $(i,j) \in I^2$ s.t. $i \neq j$, $\overline{A_i} \cap \overline{A_j} = \overline{A_i \cup A_j}$, it can be shown (with an induction for example) that the focal elements of $\bigoplus_{i \in I} \overline{A_i}^{\alpha_i}$ are the elements \overline{C} with $C = \bigcup_{i \in I' \subseteq I} A_i$ and have a mass equal to $\prod_{i \in I'} \beta_i \prod_{j \in I \setminus I'} \alpha_j$.

Consequently, operation $m \bigcirc (\bigcirc_{i \in I} \overline{A_i}^{\alpha_i})$ also consists in transferring a part $\prod_{i \in I'} \beta_i \prod_{j \in I \setminus I'} \alpha_j$ of each mass m(B), $B \subseteq \Omega$, from B to $B \cup \overline{C}$, for all $C = \bigcup_{i \in I' \subseteq I} A_i$. We can then conclude that Equations (2) and (4) are equivalent for any non empty set of contexts A.

Example 1. Let us consider $\Omega = \{\omega_1, \omega_2\}$ and $\mathcal{A} = 2^{\Omega}$, and let us denote $\alpha_{\{\omega_1\}}$ by α_1 , $\alpha_{\{\omega_2\}}$ by α_2 , and α_{Ω} by α_{12} . Equation (4) gives

In contrast, Equation (3) leads to

To summarize, in [1], the equivalence was shown between (2) and (3) when \mathcal{A} forms a partition of Ω . This corrigendum shows that this equivalence does not hold for any \mathcal{A} , and that (2) is actually equivalent to (4) for any (non empty) \mathcal{A} .

References

- [1] D. Mercier, B. Quost and T. Denœux. Refined modeling of sensor reliability in the belief function framework using contextual discounting. *Information Fusion*, 9 (2008) 246–258.
- [2] D. Mercier, É. Lefèvre and F. Delmotte. Belief Functions Contextual Discounting and Canonical Decompositions. *International Journal of Approximate Reasoning*, 53 (2012) 146–158.