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Abstract

Knowledge about the quality of a source can take several forms: it may for instance
relate to its truthfulness or to its relevance, and may even be uncertain. Of particular
interest in this paper is that such knowledge may also be contextual; for instance the
reliability of a sensor may be known to depend on the actual object observed. Various
tools, called correction mechanisms, have been developed within the theory of belief
functions, to take into account knowledge about the quality of a source. Yet, only a
single tool is available to account for contextual knowledge about the quality of a source,
and precisely about the relevance of a source. There is thus some lack of flexibility since
contextual knowledge about the quality of a source does not have to be restricted to its
relevance. The first aim of this paper is thus to try and enlarge the set of tools avail-
able in belief function theory to deal with contextual knowledge about source quality.
This aim is achieved by (1) providing an interpretation to each one of two contextual
correction mechanisms introduced initially from purely formal considerations, and (2)
deriving extensions – essentially by uncovering contextual forms – of two interesting
and non contextual correction mechanisms. The second aim of this paper is related
to the origin of contextual knowledge about the quality of a source: due to the lack
of dedicated approaches, it is indeed not clear how to obtain such specific knowledge
in practice. A sound, easy to interpret and computationally simple method is there-
fore provided to learn from data contextual knowledge associated with the contextual
correction mechanisms studied in this paper.

Keywords: Dempster-Shafer theory, Belief functions, Information correction, Dis-
counting.



1 Introduction

In today’s society, a lot of information is accessible. Yet, for a piece of information
to be useful, it must be interpreted with respect to the source that provides it, and in
particular in the light of the quality of the source. Clearly, this is no easy task. First, the
quality of a source may come in many guises: a source can for instance be biased, or even
be totally irrelevant. Second, this quality may be only known with some uncertainty by
the agent who has to interpret the piece of information [28].

The theory of belief functions [32, 39, 36] is a flexible framework to model and deal
with uncertainty. Various tools have been developed within this framework to take into
account uncertain knowledge about the quality of a source and to modify, or correct [19,
28], a piece of information provided by the source according to this knowledge. The most
common, and historically the first, of such tools is the discounting operation [32, 33],
which corresponds to the situation where the agent has some knowledge regarding the
relevance of the source [28]. The discounting operation is central in numerous and
diverse applications of belief function theory, such as classification [5] and information
fusion [31, 16, 40] (see [27, Remarks 5 and 6] for more details on the role of discounting
in these applications).

Since its inception, the discounting operation has been extended in different ways.
Notably, its inverse, called de-discounting, is introduced and used in [7] to show that two
well-known and apparently quite different classifiers based on belief functions, produce
actually similar outputs in an important special case. This mechanism allows one to
retract a discounting which is judged no longer valid or justified; it has the effect of
strengthening, rather than weakening as is the case with discounting, a piece of infor-
mation. It is applied successfully in a mailing address recognition system [19], where it
is used in conjunction with discounting to correct outputs of postal address readers.

Another interesting extension is the correction mechanism proposed recently by Pi-
chon et al. [28], in order to take into account knowledge about the truthfulness of a
source, besides its relevance. Its interest resides in the fact that it offers a means to deal
with sources that may lie, or that are biased in the case where the source is a sensor.
As shown in [28], truthfulness assumptions are also quite interesting in that they can
be used to reinterpret all connectives of Boolean logic, which in turn leads to generalize
the unnormalized Dempster’s rule [4, 32] to all Boolean connectives – this rule being the
pivotal and most often used combination rule in belief function theory.

Of particular interest in this paper is the fact that the quality of a source may also
be contextual; for instance1, a thermometer is relevant to measure a temperature which
falls within its range, but is typically useless if the temperature is outside of it; if we
let X = {−100◦C, . . . , 1000◦C} be the possible temperatures, then the context here is
the range, which could be, e.g., {−38◦C, . . . , 356◦C} (range of mercury thermometers).
Furthermore, such contextual quality may also be known with some uncertainty; for
instance one may believe to some degree that a source is relevant for a given context.

To deal with such contextual knowledge, yet another extension of discounting is
introduced by Mercier et al. [23], who consider the case where one has some knowledge
about the relevance of the source, conditionally on different subsets (contexts) A of X
such that the set A of these contexts forms a partition of X , leading to an operation
called contextual discounting based on a coarsening. Formally, contextual discounting

1Other examples of contextual quality will be given in later sections of this paper.
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based on a coarsening relies on the disjunctive rule of combination [9, 33] and is related
to the canonical decomposition of a belief function [34] as highlighted in [20]. This
contextual correction mechanism was extended recently by Mercier et al. [21]: the set
of contexts A for which one has some knowledge about the relevance of the source can
be arbitrary (it no longer needs to form a partition of X ).

Contextual discounting based on a coarsening [23] and its extension uncovered in [21]
are, to the best of our knowledge, the only contextual correction mechanisms that have
been thoroughly studied in the literature. There is thus clearly a lack of tools to deal with
contextual quality, since it does not have to be restricted to contextual relevance. As a
matter of fact, Mercier et al. [20] introduce two other contextual correction mechanisms,
which are quite interesting from a formal point of view: the first one, referred simply
as contextual discounting in [20, Theorem 1]2, can be viewed as a generalization of
contextual discounting based on a coarsening in that it has the same formal definition
as this latter mechanism except that the set A that appears in its definition can be
arbitrary; the second one is a dual reinforcement process to contextual discounting,
which has a similar definition as contextual discounting, except that it relies on the
unnormalized Dempster’s rule, and it can also be linked to the canonical decomposition
of a belief function. However, Mercier et al. [20] do not provide an interpretation for
this latter correction mechanism, nor do they provide an interpretation for contextual
discounting as shown in [21], hence the practical usefulness of these two contextual
correction mechanisms remains unknown.

As a first step toward enlarging the set of tools dedicated to handling contextual
quality, one may thus try and provide an interpretation to each one of Mercier et al. [20]
contextual discounting and reinforcement processes. Mimicking what has been done
for discounting with the introduction of contextual discounting based on a coarsening,
one may also try and derive contextual forms of correction mechanisms that have al-
ready proved interesting in their non contextual versions; in particular one may attempt
to “contextualize” the two extensions of discounting recalled above that are the de-
discounting operation and Pichon et al. [28] truthfulness-based correction mechanism.
The first aim of this paper is to explore these different routes and to find out whether
they can yield useful complements to contextual discounting based on a coarsening and
its recent extension [21], with respect to the problem of handling contextual knowledge
about the quality of a source. As will be seen, this exploration rests on a detailed
analysis of Pichon et al. [28] truthfulness model.

In addition to the above issue of being able to take into account contextual knowledge
about the quality of a source, an associated issue is the origin of such knowledge; it
is indeed not totally clear how to obtain such specific knowledge in practice. Two
different approaches [11, 23] have been proposed to find out the contextual quality of
a source, and more precisely to discover it from available labelled data. Elouedi et
al. [11] approach is based on the use of confusion matrices. Its simplicity makes it
quite appealing. However, it is restricted to the case of contextual discounting based
on a coarsening, where the coarsening is fixed to the partition of singletons. Besides, it

2The operation referred to as contextual discounting in [20, Theorem 1] was thought – erroneously
as shown in [21] – to be the extension to an arbitrary set of contexts, of contextual discounting based
on a coarsening, hence its name. To ensure consistency with previous published works, the same name
is used for this operation in this paper, although the results in [21] suggest this name may be somewhat
of a misnomer.
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basically amounts to assuming that a source makes a correct prediction only when it is
relevant, which is debatable (a non relevant source may provide correct information, see,
e.g., [28]). Mercier et al. [23] approach on the other hand, relies on the minimization
of an error criterion. It is quite interesting since, in addition to learning the contextual
quality of a source, it may be potentially useful to improve the performance of a source
in, e.g., a classification application. However, it is restricted to the case of contextual
discounting based on a coarsening, where a partition (set of contexts) of X has been
fixed beforehand. The second aim of this paper is therefore to alleviate this latter
restriction and more generally to extend Mercier et al. [23] learning approach to the
other contextual correction mechanisms studied in this paper, such as Mercier et al. [20]
contextual discounting and reinforcement processes.

This paper is organized as follows. Necessary notions on belief function theory
and on existing correction mechanisms are recalled in Section 2. A new framework
for handling detailed assumptions about the truthfulness of a source is then obtained
from a careful analysis of Pichon et al. [28] truthfulness model, which is carried out in
two steps (Section 3 then Section 4). Using this framework, an interpretation for each
one of Mercier et al. [20] contextual discounting and reinforcement processes is derived
(Section 5). Contextual de-discounting is introduced and then used in conjunction with
the canonical decomposition, to define an extension of contextual discounting (Section
6). A contextual version of Pichon et al. [28] truthfulness-based correction mechanism is
uncovered in Section 7. Learning contextual correction mechanisms from labelled data
is addressed in Section 8. Finally, Section 9 concludes the paper.

2 Belief function theory: necessary notions

In this section, we first recall basic concepts of belief function theory. Then, we present
existing correction mechanisms that are of interest for this paper.

2.1 Basic concepts

We review in this section the following basic concepts: the representation, combination
and canonical decomposition of beliefs.

2.1.1 Representation of beliefs

In this paper, we adopt Smets’ Transferable Belief Model (TBM) [39, 36], where the
beliefs held by an agent regarding the actual value taken by a parameter x defined on
a finite domain, called frame of discernment, X = {x1, . . . , xK}, are modeled using a
belief function [32] and represented using an associated mass function. A mass function
(MF) on X is defined as a mapping m : 2X → [0, 1] verifying

∑
A⊆X m (A) = 1. The

mass m(A) represents the subjective probability that the agent knows that the value of
x lies somewhere in set A, and nothing more specific [3, 10].

Subsets A of X such that m(A) > 0 are called focal sets of m. A MF is said to be:
vacuous if X is its only focal set, in which case it is denoted by mX ; inconsistent if ∅
is its only focal set, in which case it is denoted by m∅; dogmatic if X is not a focal set;
normal if ∅ is not a focal set. A non normal MF m can be transformed into a normal
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MF m∗ by the normalization operation defined as follows, for all A ⊆ X :

m∗(A) =

{
k ·m(A) if A 6= ∅,
0 otherwise,

(1)

with k = (1−m(∅))−1.
Equivalent representations of a MF m exist. In particular the belief, plausibility,

commonality and implicability functions are defined, respectively, as:

bel (A) =
∑
∅6=B⊆A

m (B) ,

pl (A) =
∑

B∩A 6=∅

m (B) ,

q (A) =
∑
B⊇A

m (B) ,

and
b (A) =

∑
B⊆A

m (B) ,

for all A ⊆ X . MF m can be recovered from any of these functions. In particular, we
have:

m(A) =
∑
B⊇A

(−1)|B|−|A|q(B), (2)

for all A ⊆ X , with |A| denoting the cardinality of A. The degree of belief bel(A)
evaluates to what extent event A is logically implied by the available evidence and pl(A)
evaluates to what extent event A is consistent with the available evidence [10]; the
commonality and implicability functions play more of a technical role as will be seen in
the next section.

2.1.2 Combination of beliefs

Beliefs can be aggregated using so-called combination rules. In particular, the conjunc-
tive combination rule, or conjunctive rule for short, which is the unnormalized version
of Dempster’s rule [4], is defined as follows. Let m1 and m2 be two MFs, and let m1 ∩©2

be the MF resulting from their combination by the conjunctive rule denoted by ∩©. We
have:

m1 ∩©2 (A) =
∑

B∩C=A

m1 (B)m2 (C) , ∀A ⊆ X . (3)

The conjunctive rule admits a simple expression in terms of commonality functions:

q1 ∩©2(A) = q1 (A) · q2 (A) , ∀A ⊆ X , (4)

where q1, q2 and q1 ∩©2 denote the commonality functions associated to m1, m2 and
m1 ∩©2, respectively. The conjunctive rule is commutative, associative and admits the
vacuous MF mX as neutral element.
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Assume now that m1 ∩©2 has been obtained by combining MFs m1 and m2, and then
it appears that m2 is actually not supported by evidence and should thus be removed
from m1 ∩©2. This operation is possible using the inverse of the conjunctive rule [34, 6],
which may be called the conjunctive decombination rule and denoted by 6∩©. We have:

m1 ∩©2 6∩©m2 = m1.

Let q1 and q2 be the commonality functions associated respectively to any two MFs m1

and m2, the conjunctive decombination rule is defined as:

q1 6∩©2 (A) =
q1(A)

q2(A)
, ∀A ⊆ X . (5)

This operation is well-defined as long as m2 is non dogmatic (in which case we have
q2(A) > 0 for all A) and m1 6∩©2 is a MF (this is not necessarily the case since the
quotient of two commonality functions is not always a commonality function).

Other combination rules of interest for this paper are the disjunctive rule ∪© [9,
33] and the equivalence rule ∩© [35, 25]. Their definitions are similar to that of the
conjunctive rule: one merely needs to replace ∩ in (3) by, respectively, ∪ and ∩, where
∩ denotes logical equality, i.e., B∩C = (B ∩ C) ∪ (B ∩ C) for all B,C ⊆ X , where A
denotes the complement of some A ⊆ X . The interpretations of these three rules are
discussed in detail in [28].

The disjunctive rule has a simple expression in terms of implicability functions, which
is the counterpart of (4):

b1 ∪©2(A) = b1 (A) · b2 (A) , ∀A ⊆ X .

The disjunctive rule is commutative, associative and admits the inconsistent MF m∅
as neutral element. Besides, as for the conjunctive rule, an inverse operation may be
defined for ∪© [6]:

b1 6∪©2 (A) =
b1(A)

b2(A)
, ∀A ⊆ X .

This operation, referred to as disjunctive decombination, is well-defined as long as m2

is non normal, since in this case we have b2(A) > 0 for all A.
We may note that a similar expression as (4), i.e., a simple pointwise product ex-

pression, exists for the rule ∩©. We defer its introduction for clarity of presentation.

2.1.3 Canonical decompositions

Following Shafer [32, Chapter 4] (see also [34, 6]), a MF m may be called conjunctively
separable, or, for short, ∩©-separable, if it can be obtained as the result of the combination
by the conjunctive rule of so-called simple MFs, which are MFs having at most two focal
sets, including the frame of discernment X [6].

A simple MF having focal sets X and A ⊂ X , with respective masses w and 1− w,
w ∈ [0, 1], may be simply denoted by Aw; for instance, a MF defined on X = {x1, x2, x3}
and having focal sets X and {x1, x3}, with respective masses 0.7 and 0.3, may be denoted
by {x1, x3}0.7. Using this notation, every non dogmatic ∩©-separable MF m may be
uniquely expressed as [34, 6]:

m = ∩©A⊂XA
w(A), (6)

with w(A) ∈ (0, 1] for all A ⊂ X . Example 1 illustrates Equation (6).
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Example 1. Let X = {x1, x2, x3} and m be a non dogmatic MF defined on X by:

m({x1}) = 0.6,

m({x1, x3}) = 0.12,

m(X ) = 0.28.

We have

m = ∅1 ∩©{x1}0.4 ∩©{x2}1 ∩©{x3}1 ∩©{x1, x2}1 ∩©{x1, x3}0.7 ∩©{x2, x3}1,

or, equivalently, m = ∩©A⊂XA
w(A), with

w(A) =


0.4 if A = {x1},
0.7 if A = {x1, x3},
1 ∀A ∈ 2X \ {{x1}, {x1, x3},X},

Hence, m is a ∩©-separable MF.

For any non dogmatic ∩©-separable MF m uniquely expressed as (6), let us define
the sets C = {A|A ⊂ X , w(A) < 1} and W = {Aw(A)|A ∈ C}; for instance, for the MF
m in Example 1, we have C = {{x1}, {x1, x3}} and W = {{x1}0.4, {x1, x3}0.7}. We will
refer to set C associated to a non dogmatic ∩©-separable MF m, as its conjunctive core.
Clearly, since A1 is equivalent to the vacuous mass function mX for any A ⊂ X and as
mX is a neutral element for ∩©, Equation (6) reduces to

m = ∩©A∈CA
w(A), (7)

for any non dogmatic ∩©-separable MF m such that m 6= mX
3, i.e., m can be uniquely

expressed as the conjunctive combination of the simple MFs inW. For instance, for MF
m in Example 1, we have m = {x1}0.4 ∩©{x1, x3}0.7.

Smets [34] further shows that in fact any non dogmatic MF can be obtained from
simple MFs. More precisely, let m be a non dogmatic MF, then it may be uniquely
expressed as the conjunctive decombination of two non dogmatic ∩©-separable MFs,
that is, as:

m = mc 6∩©md, (8)

where mc and md are non dogmatic ∩©-separable MFs, such that their conjunctive cores
denoted respectively by Cc and Cd satisfy Cc ∩ Cd = ∅, as illustrated by Example 2
below. This decomposition into simple MFs of a non dogmatic MF m is referred to as
the conjunctive canonical decomposition of m. The mc and md components in (8) are
called the confidence and diffidence components, respectively, of m by Smets [34], who
proposed to view mc as representing positive evidence (“good reasons to believe”) in
some propositions A ⊆ X , and md as representing negative evidence (“good reasons not
to believe”) in some other propositions.

Example 2 (Based on Example 2 of [34]). Let X = {x1, x2, x3} and m be a MF defined
on X by:

m({x1, x2}) = 1/3,

m({x1, x3}) = 1/3,

m(X ) = 1/3.

3If m = mX , i.e., m is vacuous, then we have w(A) = 1 for all A ⊂ X and thus C = ∅.
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We have m = mc 6∩©md, with mc = ∩©A⊂XA
wc(A) where

wc(A) =


0.5 if A = {x1, x2},
0.5 if A = {x1, x3},
1 ∀A ∈ 2X \ {{x1, x2}, {x1, x3},X},

and with md = ∩©A⊂XA
wd(A) where

wd(A) =

{
0.75 if A = {x1},
1 ∀A ∈ 2X \ {{x1},X}.

Therefore, Cc = {{x1, x2}, {x1, x3}}, Cd = {{x1}} and Cc ∩ Cd = ∅.

As shown in [6], it is possible to obtain a relation based on the disjunctive rule ∪©
that is the counterpart to (8). Let us call ∪©-separable a MF that can be obtained as the
result of the combination by the disjunctive rule of so-called negative simple MFs, which
are MFs having at most two focal sets, including the empty set ∅ [6]. A negative simple
MF having focal sets ∅ and A 6= ∅, with respective masses v and 1−v, v ∈ [0, 1], may be
simply denoted by Av; for instance, a MF defined on X = {x1, x2, x3} and having focal
sets ∅ and {x1, x3}, with respective masses 0.7 and 0.3, may be denoted by {x1, x3}0.7.
Every non normal ∪©-separable MF m may then be uniquely expressed as [6]:

m = ∪©A 6=∅Av(A), (9)

with v(A) ∈ (0, 1] for all A 6= ∅. For any non normal ∪©-separable MF m uniquely
expressed as (9), we refer to the set Cdisj = {A|A 6= ∅, v(A) < 1} as the disjunctive core
of m.

Then, any non normal MF m may be uniquely expressed as the disjunctive decom-
bination of two non normal ∪©-separable MFs, that is, as:

m = mc,disj 6∪©md,disj , (10)

where mc,disj and md,disj are non normal ∪©-separable MFs, such that their disjunctive
cores denoted respectively by Cc,disj and Cd,disj satisfy Cc,disj ∩ Cd,disj = ∅. This decom-
position into negative simple MFs of a non normal MF is referred to as its disjunctive
canonical decomposition.

2.2 Correction mechanisms

Knowledge about the reliability of a source is classically taken into account in the TBM
through the discounting operation [32, 33]. Suppose a source S providing a piece of
information represented by a MF mS . Let β, with β ∈ [0, 1], be the agent’s degree of
belief that the source is reliable. The agent’s belief m on X is then defined by:

m(A) = β mS(A) + (1− β)mX (A), ∀A ⊆ X . (11)

Remarkably, Equation (11) is also obtained if the agent assumes that the source is
reliable with mass β and not reliable with mass 1 − β, rather than if he assumes that
the source is reliable with degree of belief β [23, 28]. This alternative interpretation of
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discounting may be sometimes more instructive when discounting needs to be compared
with other correction mechanisms.

Denœux and Smets [7] introduce a correction mechanism, called de-discounting,
which is basically the inverse of the discounting operation. Assume an agent that re-
ceives a mass function mS from a source, mS being the result of a discounting with
degree β, 1−mS(X ) ≤ β ≤ 1, of some mass function m. Assume further that the agent
believes that this discounting is not valid. He can then recover m using de-discounting:

m(A) =
mS(A)− (1− β)mX (A)

β
, ∀A ⊆ X . (12)

Mercier et al. [23] consider the case where the agent has some knowledge about the
reliability of a source, conditionally on different subsets (contexts) A of X such that the
set of these contexts forms a partition of X . Precisely, let βA, with βA ∈ [0, 1], be the
agent’s degree of belief that the source is reliable in context A ⊆ X and let A be the set
of contexts for which the agent possesses such contextual knowledge, where A forms a
partition of X . The agent’s belief m on X is then defined by [23]:

m = mS ∪©A∈AAβA , (13)

where AβA denotes the negative simple MF having focal sets ∅ and A with respective
masses βA and 1 − βA. Equation (13) is known as contextual discounting based on a
coarsening. It extends discounting defined by (11), which can be expressed as [23]:

m = mS ∪©Xβ, (14)

where Xβ denotes the negative simple MF having focal sets ∅ and X with respective
masses β and 1−β, i.e., discounting is a particular case of contextual discounting based
on a coarsening, which is recovered for A = {X}. Moreover, Mercier et al. [20] provide
an equivalent representation for (13) using the fact that the term ∪©A∈AAβA in (13)
constitutes a MF whose canonical decomposition into negative simple MFs is direct
(from its definition one can see that it is a ∪©-separable MF). This other representation
is based on the so-called disjunctive weight function [6] (we refer the interested reader
to [20] for details on this other representation).

Recently, Mercier et al. [20, 21] consider the more general case where the agent
has some knowledge about the reliability of a source, conditionally on different subsets
(contexts) A of X , but where the set of these contexts can be arbitrary, that is do not
need to form a partition of X . Let βA, with βA ∈ [0, 1], be the agent’s degree of belief
that the source is reliable in context A ⊆ X and let A be the set of contexts for which the
agent possesses such contextual knowledge. The agent’s belief m on X is then defined
by [21]:

m = mS ∪©( ∩©A∈AA
1−βA). (15)

In the correction schemes recalled above, the reliability of a source is assimilated to
its relevance as explained in [28]. In [28], Pichon et al. assume that the reliability of a
source involves in addition another dimension: its truthfulness. Pichon et al. [28] note
that there exists various forms of lack of truthfulness for a source. However, Pichon
et al. [28] study only the crudest description of the lack of truthfulness, where a non
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truthful source is a source that declares the contrary of what it knows. According to
this definition, from a piece of information of the form x ∈ B for some B ⊆ X provided
by a relevant source S, one must conclude that x ∈ B or x ∈ B, depending on whether
the source S is assumed to be truthful or not. More generally, suppose that S provides a
piece of information represented by a MF mS and that the agent thinks that the source
is truthful with mass β and non truthful with mass 1 − β. Then, his belief m on X is
defined by [28]:

m(A) = β ·mS(A) + (1− β) ·mS(A), ∀A ⊆ X , (16)

where mS denotes the negation of MF mS defined as mS(A) = mS(A), ∀A ⊆ X [9].
The operation defined by (16) may be called negating of a belief function, since m
becomes closer to the negation mS of mS as β approaches 0. This is in contrast with the
discounting operation, for which m becomes closer to the vacuous mass function mX as
β approaches 0.

Finally, Mercier et al. [20] introduce formally two contextual correction mechanisms,
called contextual discounting (CD) and contextual reinforcement (CR) hereafter. They
are defined as follows. Let mS be a MF provided by a source S. Then, the CD of mS

is the MF m defined by:

m = mS ∪©A∈AAβA . (17)

and the CR of mS is the MF m defined by:

m = mS ∩©A∈AA
βA , (18)

with βA ∈ [0, 1], A ∈ A, for some subset A of 2X . CD (17) is clearly a straightforward
formal generalization of contextual discounting based on a coarsening (13), the mere
difference being that A in (17) do not need to form a partition of X contrary to that
in (13). Mercier et al. [20] show that CR amounts to the negation of the CD of the
negation of mS . However, they do not go further in providing a clear explanation as to
what knowledge about the behavior of the source this correction of mS correspond, nor
do they provide an interpretation for CD as shown by [21]. One of the main results of
this paper is to provide an interpretation for both CD and CR; it relies on an extension
of Pichon et al. [28] truthfulness model, which is introduced in two steps (Section 3 then
Section 4).

3 Contextual truthfulness

As recalled in Section 2.2, Pichon et al. [28] study only a rudimentary form of non truth-
fulness. In this section, a detailed analysis of Pichon et al. [28] truthfulness model is first
conducted. This analysis then leads naturally to a refined model of source truthfulness
that allows the integration of more subtle knowledge about the lack of truthfulness of
an information source.

3.1 Analysis of Pichon et al. truthfulness model

Let us review and analyze in some details Pichon et al. [28] truthfulness model. This
analysis will be informed by the following example (Example 3) borrowed from [14],
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which will be subsequently adapted to try and provide new insights on Pichon et al.
truthfulness model.

Example 3 (Example 14 of [14]). Suppose a murder has been committed. There are
three suspects: Peter, John, and Mary. In the belief function framework, the set
X = {Peter, John,Mary} can be seen as the frame of discernment associated to the
parameter x representing the murderer.

Suppose a witness who is aware that the three suspects are Peter, John, and Mary,
and that tells that the murderer was a man. This piece of information is equivalent to
an agent who receives it, to the testimony x ∈ B, with B = {Peter, John}. Hence, based
on this evidence, the following MF representing the agent’s belief on the murderer can
be constructed:

m({Peter, John}) = 1. (19)

This kind of example is quite common in the literature on belief functions and is
often used to illustrate notions of the framework (see in particular the original problem
“The murder of Mr. Jones” in Smets and Kennes [39]). Example 3 is admittedly quite
simple, yet if we take a closer look at it, a fact that seems trivial but that will nonetheless
be instrumental for our analysis, can be noticed. Indeed, by remarking that the witness
is actually providing information on the parameter of interest x via an auxiliary variable
y with domain Y = {male,¬male}, we can notice that an implicit assumption is made
in this example: the witness must have the same view as the agent on who is a man
among the suspects, i.e., Peter and John, for the conclusion reached by the agent to
be proper, that is, formally, they must both think that the variables y and x are related
by the mapping ρ : Y → 2X defined by:

ρ({man}) = {Peter, John}, ρ({¬man}) = {Mary},

and known as a refining [32]. Obviously, in this example, the witness most certainly has
the same view as the agent on who is a man, thus this assumption can be safely kept
implicit and the conclusion reached by the agent is sound.

Now, as recalled in Section 2.2, Pichon et al. [28] consider a truthfulness model where
an agent should deduce that x ∈ B from a piece of information x ∈ B provided by a
non truthful source, assuming that a non truthful source is a source that declares the
contrary of what it knows. For instance, if the witness in Example 3 had declared that
the murderer was Mary or John, and if the agent had believed that the witness was
non truthful, then the agent should have deduced that the murderer was Peter. Let us
further note that Pichon et al. [28] also call a non truthful source, a lying source, and
they explicitly write that they “use the term lying as a synonym of not telling the truth,
irrespective of the existence of any intention of a source to deceive” [28]. The same
applies in this paper, where we use this term to ensure continuity with previous related
works. Yet, we may also use the term biased, which is perhaps a more appropriate and
less connoted term. Hence, a source that is considered to be lying may equivalently be
said to be biased.

We can see at least two practical situations where one would need to use such a
truthfulness model and negate the information provided by a source. The first one is

4This is actually only an excerpt of [14, Example 1], which has furthermore been slightly modified
here to fit the formalism and terminology used in the present paper, and to serve our purpose.
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perhaps the most obvious and easy to understand: when a source lies intentionally,
i.e., has the intention to deceive, and chooses the most simple and common strategy
to deceive, i.e., the crudest kind of lie, which is to tell the contrary of what it knows.
The second situation is one where the source is non truthful unintentionally, which may
be the case when the source has a different (precisely opposite) view from that of the
agent on the relation between an auxiliary variable and the parameter of interest, as
illustrated by Example 4.

Example 4. Suppose a murder has been committed. There are four male suspects:
Eloy, Conrad, Linus and Aeneas. Let X = {Eloy, Conrad, Linus,Aeneas} be the
domain associated to the parameter x representing the murderer.

Suppose an agent who sees the suspects and that only Eloy and Conrad have a beard.
Assume further that a witness, Jane, is aware that the suspects are Eloy, Conrad, Linus
and Aeneas, and that tells that the murderer had a beard. This piece of information
provided by Jane is thus equivalent to the agent to the testimony x ∈ B, with B =
{Eloy, Conrad}.

Suppose the agent learns some time after receiving this testimony that Jane has
actually not met the suspects recently and in particular she is not aware that since she
has last seen them, each of the suspects has changed his beard situation (those that
did not have a beard have grown one and those that had one have cut it). In other
words, her knowledge ρJane about the relation between the auxiliary variable y defined
on Y = {beard,¬beard} and the parameter of interest x is outdated and is actually the
opposite of the agent’s knowledge ρAg on this relation:

ρJane({beard}) = ρAg({¬beard}) = {Linus,Aeneas},
ρJane({¬beard}) = ρAg({beard}) = {Eloy, Conrad}.

This means that through the piece of information “the murderer had a beard”, that
was equivalent to the agent to the testimony x ∈ B = {Eloy, Conrad}, Jane mislead
(unintentionally) the agent about what she knows of the guilt of each suspect, and in
particular she told the opposite of what she knows, since she actually knows that x ∈
{Linus,Aeneas}.

Hence, from his knowledge on her bias with respect to the beard situation of all the
suspects, and in particular that she tells the opposite of what she knows, i.e., is non truth-
ful, the agent should deduce from Jane’s piece of information x ∈ B = {Eloy, Conrad}
that in fact x ∈ B = {Linus,Aeneas}, which is indeed what Jane actually knows about
the murderer.

Further insight on Pichon et al. [28] truthfulness model may be gained by examining
precisely what happens when one deduces x ∈ B from assuming that a source providing
testimony x ∈ B is lying, that is, tells the contrary of what it knows. In details, it
means that the source is assumed to be lying, i.e., telling the contrary of what it knows,
whatever it is telling concerning each of the possible values x ∈ X that admits parameter
x, since one must invert what the source tells for each of these values, as illustrated by
Example 5.

Example 5. Without lack of generality, assume for instance X = {x1, x2, x3, x4} and
that the source tells x ∈ B = {x3, x4}, i.e., it tells that x3 and x4 are possible values
for x and it tells that x1 and x2 are not possible values for x, then one must deduce
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that x ∈ B = {x1, x2}, i.e., x3 and x4 are not possible values for x and x1 and x2 are
possible values for x.

This leads us to introduce the following definition.

Definition 1. A source is said to be truthful (resp. non truthful) for a value x ∈ X ,
when it tells what it knows (resp. the contrary of what it knows) for this value.

According to this new terminology, a non truthful source in Pichon et al. [28] truth-
fulness model is then a source that is non truthful for ALL values x ∈ X (and a truthful
source is a source that is truthful for all values x ∈ X ).

This analysis allows us to highlight that the crude form of non truthfulness studied
in [28] is actually a quite strong model of the lack of truthfulness of an information
source, and as such might only be suitable for a limited number of practical situations
such as the ones discussed above. It seems thus interesting to study more subtle variants
of this model, and in particular to relax its assumption about the truthfulness of the
source for each x ∈ X : a source could be non truthful only for SOME values x ∈ X
(and truthful for all other values x ∈ X ).

This alternative should add some flexibility in terms of knowledge that can be taken
into account about a source lack of truthfulness, and could thus be interesting from an
applicative point of view. Such a study is carried out in the next section.

3.2 Contextual liar

Let us consider the case of a source assumed to be non truthful for some values x ∈ X ,
and to be truthful for all other values x ∈ X . Let A ⊆ X be the set of values for which
the source is assumed to be truthful, and A the set of values for which it is assumed to
be non truthful. For short, we may say that the source is truthful in A and non truthful
in A, or even more simply, when no confusion is possible, that the source is non truthful
in A (or biased in A) – it will then be implicit that the source is truthful in A.

Definition 2 (Non truthful in A). A source is said to be non truthful in A if it is
truthful for all x ∈ A, and non truthful for all x ∈ A. This state of the source is denoted
by `A.

Intuitively, this state corresponds simply to a source that lies only for a subset of
values, that is, it tells the opposite of what it knows for each value in this set, and tells
what it knows for the values outside of this set. If we call this latter set a context, then
the source may be seen and referred to as a contextual liar.

A sensible question is then: what must one conclude about x when the source tells
x ∈ B and is assumed to be in state `A? The answer is provided by Proposition 1.

Proposition 1. If a source tells x ∈ B and is assumed to be non truthful in A, one
must deduce that x ∈ B∩A.

Proof. To prove this proposition, one merely needs to look in turn at each x ∈ X and
to find which one of the four following cases applies:

1. If the source tells x is possibly the actual value of x, i.e., the information x ∈ B
provided by the source is such that x ∈ B,
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(a) And if the source is assumed to be truthful for x, i.e., x ∈ A, then one must
conclude that x is possibly the actual value of x;

(b) And if the source is assumed to be non truthful for x, i.e., x ∈ A, then one
must conclude that x is not a possibility for the actual value of x;

2. If the source tells x is not a possibility for the actual value of x, i.e., x 6∈ B,

(a) And if the source is assumed to be truthful for x, i.e., x ∈ A, then one must
conclude that x is not a possibility for the actual value of x;

(b) And if the source is assumed to be non truthful for x, i.e., x ∈ A, , then one
must conclude that x is possibly the actual value of x.

Table 1 synthesizes these four cases: it lists exhaustively, i.e., for all possible cases with
respect to the membership of a given value x ∈ X to the sets B and A, whether one
should deduce that this value x is possibly the actual value of x or not – the former is
indicated by a 1 and the latter by a 0 in column `A. According to Table 1, when the

Table 1: Non truthful in A

x ∈ B x ∈ A `A
0 0 1
0 1 0
1 0 0
1 1 1

source is assumed to be in state `A, then one should deduce that x ∈ X is a possible
value for x iff x belongs to both B and A or does not belong to both B and A (which
corresponds to logical equality), and therefore, since this holds for all x ∈ X , one should
deduce that x ∈ (B ∩A) ∪ (B ∩A) = B∩A.

Example 6. As an illustration of Proposition 1, assume for instance X = {x1, x2, x3, x4}
and that the source tells x ∈ B = {x3, x4}. Furthermore, assume the source is in
state `{x1,x3}, i.e., is non truthful for x2 and for x4. Then, one should deduce that
x ∈ {x3, x4}∩ {x1, x3} = {x2, x3}.

Remark 1. The non truthful state considered by Pichon et al. [28], which corresponds
to a source that is non truthful for all values x ∈ X , is equivalent to the state `∅, and is
thus a particular case of the states `A, A ⊆ X .

Remark 2. The states `A, A ⊆ X , correspond to the states used by Pichon [25] to
provide an interpretation for the α-conjunctions [35, 37], which is to our knowledge the
first one to consider such states (but they are not introduced and discussed with as many
details in [25] as they are in this paper).

In practice, similarly to what we have done in Section 3.1 for the non truthful state
considered by Pichon et al. [28], we can distinguish two situations where states `A may
be useful. First, the source may be intentionally non truthful in A, simply to deceive an
agent, yet in a more subtle way than what is allowed by Pichon et al. [28] non truthful
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state. Indeed, the source may think that to better deceive the agent, it is going to lie,
i.e., tell the opposite of what it knows, but only for a subset of values rather than for
all possible values that can take the parameter of interest. Second, in the unintentional
case, such a state `A can be explained by a difference between the source and the
agent who receives the piece of information provided by the source, on the relation they
respectively believe holds between an auxiliary variable and the parameter of interest.
More precisely, such a state can be encountered when the source is “wrong” on this
relation – wrong with respect to the agent’s knowledge – but only for a subset of values
in X , as illustrated by Example 7.

Example 7 (Example 4 continued). Consider again the setting of Example 4, but this
time assume the agent learns some time after receiving Jane’s testimony that she has
actually not met recently SOME of the suspects, and in particular she is unaware that
since she has last seen these suspects, each of them has changed his beard situation.
In other words, her knowledge ρJane about the relation between y and x is partially
outdated and is actually partially the opposite of the agent’s knowledge ρAg on this
relation. Indeed, let Conrad and Linus be these suspects that she has not met recently,
we have then on the one hand

ρAg({beard}) = {Eloy, Conrad}, ρAg({¬beard}) = {Linus,Aeneas},

and on the other hand

ρJane({beard}) = {Eloy, Linus}, ρJane({¬beard}) = {Conrad,Aeneas}.

This means that through the piece of information “the murderer had a beard”, that
was equivalent to the agent to the testimony x ∈ B = {Eloy, Conrad}, Jane mislead
unintentionally (because of her partially outdated knowledge about the beard situation of
the suspects) the agent about what she knows of the guilt of the two suspects Conrad and
Linus, since she actually knows that x ∈ {Eloy, Linus}. Indeed, she told the opposite
of what she knows for these two suspects, since, e.g., she told that Conrad was possibly
the murderer (Conrad ∈ B) whereas she knows that he is not. On the contrary, she
told the truth about Eloy and Aeneas, since, e.g., she told that Eloy was possibly the
murderer (Eloy ∈ B) and she knows that he is possibly the murderer.

Hence, since she told the truth for the suspects in A = {Eloy,Aeneas} and lied ( i.e.,
was non truthful) for the suspects in A, or in other words is in state `{Eloy,Aeneas}, the
agent should deduce from Jane’s piece of information x ∈ B that in fact

x ∈ B ∩ A = {Eloy, Conrad} ∩ {Eloy,Aeneas} = {Eloy, Linus},

which is indeed what the source actually knows about the murderer.

This section has introduced a refined model of source truthfulness, which allows one
to account for a contextual lack of truthfulness of a source. This model has been obtained
by relaxing a strong assumption underlying Pichon et al. [28] truthfulness model, which
was brought to light by a detailed analysis of this latter model. Next section will show
that it is possible to push this analysis further and reveal another strong assumption
underlying Pichon et al. [28] truthfulness model.
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4 Polarized truthfulness

In this section, the analysis of Pichon et al. [28] truthfulness model started in Section 3
is pursued. This analysis then yields a further refined model of source truthfulness.

4.1 Analysis of Pichon et al. truthfulness model (continued)

Let us consider again Example 5: according to Pichon et al. [28] truthfulness model,
when a source tells x ∈ B = {x3, x4} and is assumed to be non truthful, one must
deduce that x ∈ B = {x1, x2}, that is:

• the source tells that x3 is a possible value for x, and one must deduce that x3 is
actually not a possible value for x;

• it tells that x4 is a possible value for x, and one must deduce that it is not;

• it tells that x1 is not a possible value for x, and one must deduce that it is;

• it tells that x2 is not a possible value for x, and one must deduce that it is.

To characterize what is at stake in the above reasoning, we introduced Definition 1,
that is, the notion of truthfulness for a value x ∈ X , and revealed that a non truthful
source in Pichon et al. [28] sense, is a source that is non truthful for each value x ∈ X
since it amounts to assuming that it tells the contrary of what it knows for each of those
values.

Actually, one can be even more specific about the assumptions underlying Pichon
et al. [28] truthfulness model, by distinguishing between positive clauses and negative
clauses, also known as clauses having positive polarity and negative polarity (in a gram-
matical sense; see, e.g., [13, Chapter 8]), told by the source. For instance, when the
source tells that x3 is a possible value for x, this is a positive clause told by the source,
and when the source tells that x1 is not a possible value for x, it is a negative clause.

We may then characterize more finely the truthfulness of the source for each x ∈ X ,
that is, with respect to the polarity of the clauses it tells.

Definition 3. A source is said to be positively truthful (resp. positively non truthful)
for a value x ∈ X , when it tells that x is a possible value for x and knows that it is
(resp. it is not) a possible value for x.

Definition 4. A source is said to be negatively truthful (resp. negatively non truthful)
for a value x ∈ X , when it tells that x is not a possible value for x and knows that it is
not (resp. it is) a possible value.

According to this terminology, a source which is assumed to be non truthful for
x ∈ X (Definition 1), is assumed to be positively AND negatively non truthful for x,
since whatever it may tell about x (be it a positive clause or a negative clause), it is
assumed to tell the contrary of what it knows. Most importantly, a non truthful source
in Pichon et al. [28] truthfulness model is then a source that is assumed to be positively
AND negatively non truthful, for ALL values x ∈ X (and a truthful source is a source
that is positively and negatively truthful, for all values x ∈ X ).

This finer analysis reinforces the statement made in Section 3.1: the crude form
of non truthfulness studied in [28] is actually a rather strong model of the lack of
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truthfulness of an information source. It make two assumptions, one on the context (set
of values) concerned by the lack of truthfulness and one on the polarity of the lack of
truthfulness, both of which are strong : the values concerned by the lack of truthfulness
are all the values of the frame, and both polarities (positive and negative) are concerned
by the lack of truthfulness.

Here again, it seems interesting to search for and study more subtle variants of this
crude model, to obtain more versatility. This amounts to relaxing further the model,
that is, relaxing the two above assumptions about the truthfulness of the source for each
x ∈ X : a source could be positively OR negatively non truthful for SOME values x ∈ X
(and truthful for all other values x ∈ X ).

Concretely, such relaxation comes down to three cases: a source could be

1. positively and negatively non truthful for some values x ∈ X (and truthful for all
other values x ∈ X );

2. positively non truthful and negatively truthful for some values x ∈ X (and truthful
for all other values x ∈ X );

3. positively truthful and negatively non truthful for some values x ∈ X (and truthful
for all other values x ∈ X ).

The first case was the object of the study carried out in Section 3.2, since, as already
mentioned above, a source which is non truthful for x ∈ X (Definition 1) is more precisely
said to be, using Definitions 3 and 4, positively and negatively non truthful for x. Cases
2 and 3 are treated in Sections 4.2 and 4.3, respectively.

4.2 Positive contextual liar

Let us turn our attention to case 2 above, i.e., the case where a source is assumed to
be positively non truthful and negatively truthful for some values x ∈ X , and to be
truthful for all other values x ∈ X . Let A ⊆ X be the set of values for which the
source is assumed to be truthful, and A the set of values for which it is assumed to be
positively non truthful and negatively truthful. For short, we may say that the source
is truthful in A, and positively non truthful and negatively truthful in A, or even more
simply, when no confusion is possible, that the source is positively non truthful in A (or
positively biased in A), hence mentioning explicitly only the situation where the source
commits a lie.

Definition 5 (Positively non truthful in A). A source is said to be positively non
truthful in A if it is truthful for all x ∈ A, and positively non truthful and negatively
truthful for all x ∈ A. This state of the source is denoted by pA.

This state corresponds to a source that lies (i.e., tells the contrary of what it knows)
only for a subset of values and only when it tells for any of these values that it is a
possibility for the actual value of x.

Let us note that this is yet again a more elaborate, thus more interesting, strategy
for a source to deceive an agent than to simply tell the opposite of what it knows as
in Pichon et al. [28], and thus state pA may be useful when faced with intentionally
deceitful sources (the potential usefulness of state pA in the unintentional case will be
commented later in this section). A source lying in this way may be referred to as a
positive contextual liar in the sequel.
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Proposition 2. If a source tells x ∈ B and is assumed to be positively non truthful in
A, one must deduce that x ∈ B ∩A.

Proof. The proof is similar to the proof of Proposition 1 and based on the fact that
when the source is in state pA, the four possible cases with respect to the membership
of a given value x ∈ X to the sets B and A must be treated according to Table 2.

Table 2: Positively non truthful in A

x ∈ B x ∈ A pA
0 0 0
0 1 0
1 0 0
1 1 1

Example 8. As an illustration of Proposition 2, assume for instance X = {x1, x2, x3, x4}
and that the source tells x ∈ B = {x3, x4}. Furthermore, assume the source is in state
p{x1,x3}, i.e., is positively non truthful for x2 and for x4. Then, one should deduce that
x ∈ {x3, x4} ∩ {x1, x3} = {x3}.

In the unintentional case, similarly as state `A, state pA can be explained by a
difference between the source and the agent, on the relation they respectively believe
holds between an auxiliary variable and the parameter of interest, as illustrated by
Example 9.

Example 9 (Example 4 continued). Consider again the setting of Example 4, but this
time assume the agent learns some time after receiving Jane’s testimony that she has
actually not met recently some of the suspects, and more specifically she is unaware that
among these suspects that she has not met recently, those that have changed their beard
situation are only those that have a beard.

Let Conrad and Linus be these suspects that she has not met recently. Among these
two suspects, only Conrad has a beard, and thus he is the only one who has changed his
beard situation since Jane last saw these two suspects, which means that both Conrad
and Linus did not have a beard when Jane last saw them. We have then

ρAg({beard}) = {Eloy, Conrad}, ρAg({¬beard}) = {Linus,Aeneas},

and

ρJane({beard}) = {Eloy}, ρJane({¬beard}) = {Conrad, Linus,Aeneas}.

This means that through the piece of information “the murderer had a beard”, that
was equivalent to the agent to the testimony x ∈ B = {Eloy, Conrad}, Jane mislead
unintentionally the agent about what she actually knows of the guilt of the suspects.
Precisely, due to her partially outdated knowledge on the beard situation of the suspects,
Jane told what she knows for the suspects in A = {Eloy,Aeneas}, and told the opposite
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of what she knows for each of the suspects in A only when she told that he is possibly
the murderer.

Hence, since she was truthful for the suspects in A = {Eloy,Aeneas} and was pos-
itively non truthful and negatively truthful for the suspects in A, or in other words is
in state p{Eloy,Aeneas}, the agent should deduce from Jane’s piece of information x ∈ B
that in fact

x ∈ B ∩A = {Eloy, Conrad} ∩ {Eloy,Aeneas} = {Eloy},

which is indeed what the source actually knows about the murderer.

4.3 Negative contextual liar

To provide a full picture, case 3 mentioned at the end of Section 4.1, is studied in this
section, yet more briefly since it is quite similar to case 2.

Let us recall that case 3 corresponds to assuming that a source is positively truthful
and negatively non truthful for some values x ∈ X , and is truthful for all other values
x ∈ X . Let A ⊆ X be the set of values for which the source is assumed to be positively
truthful and negatively non truthful, and A the set of values for which it is assumed to
be truthful5. For short, the source may be said to be negatively non truthful in A (or
negatively biased in A).

Definition 6 (Negatively non truthful in A). A source is said to be negatively non
truthful in A if it is positively truthful and negatively non truthful for all x ∈ A, and
truthful for all x ∈ A. This state is denoted by nA.

This state corresponds to a source that lies only for a subset of values and only when
it tells for any of these values that it is not a possibility for the actual value of x. A
source lying in this way may therefore be called a negative contextual liar.

Proposition 3. If a source tells x ∈ B and is assumed to be negatively non truthful in
A, one must deduce that x ∈ B ∪A.

Proof. The proof is similar to the proof of Proposition 1 and based on the fact that
when the source is in state nA, the four possible cases with respect to the membership
of a given value x ∈ X to the sets B and A must be treated according to Table 3.

Table 3: Negatively non truthful in A

x ∈ B x ∈ A nA
0 0 0
0 1 1
1 0 1
1 1 1

5Contrary to the states `A and pA, where A is the set of values for which the source is assumed to
be truthful. This slight difference in denoting which set is the set where the source is truthful, is useful
to present more elegantly results in the next sections, but it has no fundamental consequence.
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Example 10. As an illustration of Proposition 3, assume for instance X = {x1, x2, x3, x4}
and that the source tells x ∈ B = {x3, x4}. Furthermore, assume the source is in state
n{x1,x3}, i.e., is negatively non truthful for x1 and for x3. Then, one should deduce that
x ∈ {x3, x4} ∪ {x1, x3} = {x1, x3, x4}.

For the same reason as state pA, state nA may be useful when faced with inten-
tionally deceitful sources. A source may also happen to be a negative contextual liar
unintentionally, as illustrated by Example 11.

Example 11 (Example 4 continued). Consider again the setting of Example 4, but this
time assume the agent learns some time after receiving Jane’s testimony that she has
actually not met recently some of the suspects, and more specifically she is unaware that
among these suspects that she has not met recently, those that have changed their beard
situation are only those that do not have a beard.

Let Conrad and Linus be these suspects that she has not met recently. Among these
two suspects, only Linus does not have a beard, and thus he is the only one who has
changed his beard situation since Jane last saw these two suspects, which means that
both Conrad and Linus had a beard when Jane last saw them. We have then

ρAg({beard}) = {Eloy, Conrad}, ρAg({¬beard}) = {Linus,Aeneas},

and

ρJane({beard}) = {Eloy, Conrad, Linus}, ρJane({¬beard}) = {Aeneas}.

Jane told the opposite of what she knows for each of the suspects in A = {Conrad, Linus}
only when she told that he is not the murderer, and she told what she knows for the
suspects in A. In other words, she was positively truthful and negatively non truthful
for the suspects in A, and truthful for the suspects in A. Since she was thus in state
n{Conrad,Linus}, the agent should deduce from Jane’s piece of information x ∈ B that in
fact

x ∈ B ∪A = {Eloy, Conrad} ∪ {Conrad, Linus} = {Eloy, Conrad, Linus},

which is indeed what the source actually knows about the murderer.

The three kinds – contextual liar, positive contextual liar, and negative contextual
liar – of liar studied so far are summarized and illustrated on Figure 1. They constitute
natural relaxations of the strong assumptions underlying the state of non truthfulness
of Pichon et al. [28]. They seem at least as interesting as this state when considering
intentionally deceitful sources and may also be used to account for various ways a source
may lack truthfulness unintentionally. Yet, the setting considered is quite basic: the
testimony provided by the source is crisp (x ∈ B) and the state of the source is assumed
to be known precisely. More generally, both the testimony provided by the source and
the knowledge of the agent about the source truthfulness (referred to as meta-knowledge
in [28]) may be uncertain. This is next section topic, which in addition uses this more
general setting to provide an interpretation for contextual discounting as well as an
interpretation for contextual reinforcement.
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(a) Testimony x ∈ B and a context A. (b) Non truthful in A: B ∩ A.

(c) Positive liar in A: B ∩A. (d) Negative liar in A: B ∪A.

Figure 1: The three kinds of contextual biases of interest in this paper. (1a) Indicator
functions of a testimony x ∈ B ⊆ X and of a context A ⊆ X . (1b) In bold, result of the
transformation of the testimony x ∈ B given contextual lie `A; in such state, the source
is believed truthful in A, hence whatever it says about x within A should be kept as is,
and non truthful in A, hence whatever it says about x outside of A should be reversed.
(1c) Contextual lie pA (whenever the source says that a value outside of A is possible,
it lies, and whatever it says within A should be kept as is). (1d) Contextual lie nA
(whenever the source says that a value within A is not possible, it lies, and whatever it
says outside of A should be kept as is).
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5 Interpretation of CD and of CR

In this section, uncertainty is first added to the setting considered in Sections 3 and
4, resulting in a general framework able to handle various situations with respect to
knowledge about the contextual biases of a source. Then, an interpretation for CR is
proposed using this framework. In addition, it is shown that it is possible to provide a
similar perspective on CD.

5.1 Uncertain testimony and meta-knowledge

Let H denote the possible states of a source S with respect to its polarized contextual
truthfulness, i.e., H = H` ∪ Hp ∪ Hn, where H` = {`A|A ⊆ X}, Hp = {pA|A ⊆ X} and
Hn = {nA|A ⊆ X}.

Following [28], we can define a multivalued mapping ΓB from H to X that encodes
the three kinds of contextual lies studied in Sections 3 and 4:

ΓB(`A) = B ∩ A, (20)

ΓB(pA) = B ∩A, (21)

ΓB(nA) = B ∪A, (22)

for all A ⊆ X . ΓB(h) indicates how to interpret the piece of information x ∈ B provided
by the source, when the source is assumed to be in some state h ∈ H. In addition,
if the knowledge about the source state is imprecise and given by H ⊆ H, then one
should deduce that x ∈ ΓB(H), where ΓB(H) denotes the image of H by ΓB, defined
by ΓB(H) :=

⋃
h∈H ΓB(h).

Remark 3. We have

ΓB(pX ) = ΓB(n∅) = ΓB(`X ) = B, ∀B ⊆ X .

This is so because these three states correspond actually to the same assumption of a
truthful source. As such they may be simply denoted by t in the sequel (in accordance
with the notation used for this state in the original paper [28]).

Remark 4. States `A, pA, nA, A ⊆ X , and their associated transformations (20) (logical
equality), (21) (conjunction), (22) (disjunction), of a testimony x ∈ B, are particular
cases of a more general formal model of truthfulness assumptions yielding all possible
binary Boolean connectives, as shown in Appendix A.

As already mentioned, both the testimony of the source and the meta-knowledge of
the agent may be uncertain. Let mS be the uncertain testimony and mH the uncertain
meta-knowledge. In such case, the Behavior-Based Correction (BBC) procedure6 intro-
duced by Pichon et al. [28], can be used to derive the knowledge of the agent on X . It
is represented by the MF m defined for all C ⊆ X as [28]:

m(C) =
∑
H⊆H

mH(H)
∑

B:ΓB(H)=C

mS(B). (23)

6The BBC procedure is a general mechanism allowing one to derive an agent’s knowledge on X from
an uncertain testimony mS , when the agent has some uncertain meta-knowledge mH about the source,
and where H may represent various state spaces, not necessarily related to the notion of truthfulness.
See [28] for details.
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For convenience, we may denote by fmH(mS) the Behavior-Based Correction of MF mS

according to meta-knowledge mH, i.e., we have m = fmH(mS) with m the MF defined
by (23). The BBC procedure is illustrated by Example 12.

Example 12. Let X = {x1, x2, x3, x4}. Assume a source S provides the following
uncertain testimony:

mS({x1, x3}) = 0.7,

mS({x1, x2, x3}) = 0.3.

Suppose further the following uncertain knowledge about the quality of the source:

mH
({
p{x3,x4}

})
= 0.4,

mH
({
p{x3,x4}, n{x1,x4}

})
= 0.6,

that is, the source is assumed to be positively biased in {x1, x2} with mass 0.4, and
positively biased in {x1, x2} or negatively biased in {x1, x4} with mass 0.6.

Since

Γ{x1,x3}
(
p{x3,x4}

)
= {x1, x3} ∩ {x3, x4} = {x3} ,

Γ{x1,x3}
({
p{x3,x4}, n{x1,x4}

})
= Γ{x1,x3}

(
p{x3,x4}

)⋃
Γ{x1,x3}

(
n{x1,x4}

)
= ({x3})

⋃
({x1, x3} ∪ {x1, x4}) = {x1, x3, x4} ,

Γ{x1,x2,x3}
(
p{x3,x4}

)
= {x1, x2, x3} ∩ {x3, x4} = {x3} ,

Γ{x1,x2,x3}
({
p{x3,x4}, n{x1,x4}

})
= ({x3})

⋃
({x1, x2, x3} ∪ {x1, x4}) = X ,

the agent knowledge m on X is defined, according to the BBC procedure (23), by:

m ({x3}) = mH
({
p{x3,x4}

})
· (mS ({x1, x3}) +mS({x1, x2, x3}))

= 0.4 · (0.7 + 0.3) = 0.4,

m ({x1, x3, x4}) = mH
({
p{x3,x4}, n{x1,x4}

})
·mS({x1, x3})

= 0.6 · 0.7 = 0.42,

m ({x1, x2, x3, x4}) = mH
({
p{x3,x4}, n{x1,x4}

})
·mS({x1, x2, x3})

= 0.6 · 0.3 = 0.18.

Next section will show how BBC may be used to provide an interpretation for CR.

5.2 Contextual reinforcement

Let us consider a particular kind of contextual lie among those introduced in Sections
3 and 4: the states pA, A ⊆ X , corresponding to the assumptions that the source is a
positive liar in A.

Next proposition, which is based on theses states and that uses the notation intro-
duced in Remark 3, will be instrumental to provide our interpretation of CR.

Proposition 4. Let mS be the MF provided by a source S and let mHA,∩ be our meta-
knowledge on the source defined by

mHA,∩({t}) = βA, mHA,∩({pA}) = 1− βA, (24)
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i.e., with mass βA the source is truthful, and with mass 1− βA it is a positive liar in A.
We have

fmH
A,∩

(mS) = mS ∩©AβA .

Proof. From the definition of ∩©, we have that, for all B ⊆ X , the quantity mS(B) ·
(AβA)(X ) = mS(B)·βA is allocated to set B∩X = B and the quantity mS(B)·AβA(A) =
mS(B) · (1− βA) is allocated to set B ∩A.

Similarly, from the definition of the BBC procedure, the quantity mS(B) · βA is
allocated to set ΓB(t) = B and the quantity mS(B)·(1−βA) is allocated to set ΓB(pA) =
B ∩A, for all B ⊆ X .

We may then show one of our main results.

Proposition 5. Let mS be a MF. We have, ∀A and with βA ∈ [0, 1], ∀A ∈ A:

mS ∩©A∈AA
βA = (◦A∈A fmH

A,∩
)(mS), (25)

where ◦ denotes function composition and where mass functions mHA,∩, A ∈ A, are
defined by (24).

Proof. Without lack of generality, let us index the elements in A: A1, ..., AN , where
N = |A|. Thus, Equation (25) can be rewritten as

mS ∩©N
i=1A

βAi
i = (◦Ni=1 fmH

Ai,∩
)(mS), (26)

From Proposition 4, we have: mS ∩©A
βA1
1 = fmH

A1,∩
(mS). Hence (26) holds for N = 1.

Assume now that (26) holds for N = Q. To prove this proposition, it suffices then
to show that (26) holds for N = Q+ 1.

We have:

mS ∩©Q+1
i=1 A

βAi
i = mS ∩©Q

i=1A
βAi
i ∩©A

βAQ+1

Q+1

= (◦Qi=1 fmH
Ai,∩

)(mS) ∩©A
βAQ+1

Q+1 .

From Proposition 4, we obtain:

(◦Qi=1 fmH
Ai,∩

)(mS) ∩©A
βAQ+1

Q+1 = fmH
AQ+1,∩

((◦Qi=1 fmH
Ai,∩

)(mS))

= (◦Q+1
i=1 fmH

Ai,∩
)(mS).

Proposition 5 is important in that it constitutes the first known interpretation for
CR. It shows that CR, which appears on the left side of (25), corresponds to independent
behavior-based corrections – one for each context A ∈ A – where for each context A,
the source is assumed to be truthful with mass βA, and to be a positive liar in A with
mass 1− βA.

Proposition 5 is illustrated by Examples 13 and 14, which show that CR may be
encountered when dealing with intentionally and unintentionally lying sources, respec-
tively.

23



Example 13. Let mS be an uncertain testimony provided by a source S on X =
{x1, x2, x3}. An agent believes that S lies intentionally, and more specifically that it
positively lies for x3 with mass 0.4, and, independently, positively lies for x1 with mass
0.2.

In other words, S is subject to independent contextual lies of the form “positively
non truthful in A” for contexts A = {A1, A2} with A1 = {x1, x2} and A2 = {x2, x3},
and with masses 1− βA1 = 0.4 and 1− βA2 = 0.2.

From Proposition 5, the agent’s belief m on X is then defined by

m = mS ∩©{x1, x2}0.6 ∩©{x2, x3}0.8.

Example 14 (Example 9 continued). Consider again the setting of Example 4, but this
time assume the agent learns some time after receiving Jane’s testimony that she may
actually not have met recently some of the suspects, and more specifically she is unaware
that among these suspects that she may not have met recently, those that have changed
their beard situation are only those that have a beard. Besides, he is unsure of who are
these suspects: it coud be Conrad and Linus with mass 0.4, or independently, with mass
0.2, Linus and Eloy.

From Proposition 5, the agent’s belief m on who is the murderer is then obtained by

m = {Eloy, Conrad}0 ∩©{Eloy,Aeneas}0.6 ∩©{Conrad,Aeneas}0.8,

where {Eloy, Conrad}0 is the MF representing testimony x ∈ B = {Eloy, Conrad}.

5.3 Contextual discounting

We show in this section that it is possible to obtain a similar perspective on CD as the
interpretation proposed for CR in Section 5.2.

Let us consider another kind of contextual lie in this section: the states nA, A ⊆ X ,
corresponding to the assumptions that the source is a negative liar in A.

Proposition 6. Let mS be the MF provided by a source S and let mHA,∪ be our meta-
knowledge on the source defined by

mHA,∪({t}) = βA, mHA,∪({nA}) = 1− βA, (27)

i.e., with mass βA the source is truthful, and with mass 1−βA it is a negative liar in A.
We have

fmH
A,∪

(mS) = mS ∪©AβA .

Proof. The proof is similar to that of Proposition 4.

Proposition 7. Let mS be a MF. We have, ∀A and with βA ∈ [0, 1], ∀A ∈ A:

mS ∪©A∈AAβA = (◦A∈A fmH
A,∪

)(mS), (28)

where mass functions mHA,∪, A ∈ A, are defined by (27).

Proof. The proof is similar to that of Proposition 5, using Proposition 6 instead of
Proposition 4.
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Proposition 7 shows that, similarly to CR, CD (left side of (28)) amounts to inde-
pendent BBCs – one for each context – corresponding to simple contextual biases. The
only difference between the two correction mechanisms is what is assumed with mass
1− βA: with the former that the source is a positive liar in A, whereas with the latter
that the source is a negative liar in A. This latter finding concerning the difference
between CR and CD suggests that CR seems as interesting as CD to handle contextual
knowledge about the quality of a source, since the truthfulness assumptions associated
to CR seem as useful in practice as those associated to CD.

Remark 5. This interpretation of CD implies that classical discounting (11) amounts
simply to assuming that the source is truthful with mass β, and negatively non truthful
in X with mass 1 − β, or for short, truthful with mass β and negatively non truthful
with mass 1− β. Hence, discounting (11) may be seen as a relaxation of negating (16),
since this latter correction amounts to assuming that the source is truthful with mass β,
and (positively and negatively) non truthful with mass 1− β.

Remark 6. This interpretation of CD provides a new perspective on contextual dis-
counting based on a coarsening, which is a particular case of CD. Moreover, it brings
a new element to the discussion entertained in [20, Section 5.2], where Mercier et al.
distinguish two kinds of contextual knowledge about the quality of a source: one may
have some knowledge on the quality of the source given that the true value of the pa-
rameter of interest x is in some set A ⊆ X , which is the kind of contextual knowledge
used in the original derivation of contextual discounting based on a coarsening; and one
may have some knowledge on the quality of the source with respect to what the source
declares about x, which is the kind of contextual knowledge at play when one considers
the interpretation of CD uncovered in this section.

Remark 7. Each of CD and CR can also be viewed as a single BBC corresponding
to some particular knowledge on the truthfulness of the information source, which is
basically the one obtained by combining together, that is for all A ∈ A, the simple pieces
of meta-knowledge mHA,∪ (27) and mHA,∩ (24), respectively, as shown in Appendix B.

This section has provided an interpretation for CR as well as an interpretation for CD
using our proposed refined model of source truthfulness. From a formal point of view,
these new results were also obtained from the very definitions of these two mechanisms:
both of these contextual corrections amount to the combination with some separable MF
(conjunctive combination with a ∩©-separable MF in the case of CR, and disjunctive
combination with a ∪©-separable MF in the case of CD), and the simple MFs composing
those separable MFs are directly related to the assumptions on the truthfulness of the
source made by CR and CD as shown by Propositions 4 and 6. In the next section, we
study the possibility of extending CD and CR by going beyond the combination with
separable MFs.

6 Canonical decompositions and contextual corrections

In this section, a more general form of CD is derived by exploiting the canonical de-
composition and by contextualizing the de-discounting operation. As will be seen, this
generalization may be useful in that it allows one to take into account even more situa-
tions with respect to knowledge about the quality of a source. First, the de-discounting
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operation is contextualized. Then, contextual de-discounting is used to extend CD.
Similar results are also obtained for CR.

6.1 Contextual de-corrections

De-discounting (12) is the inverse of discounting (11), which can also be expressed as
(14). As recalled in Section 2.2, de-discounting is useful to remove a discounting that
is considered no longer valid. To remove a discounting, one merely needs to use the
disjunctive decombination rule. Indeed, we have

m ∪©Xβ 6∪©Xβ = m.

In other words, de-discounting defined by (12) admits a simple expression as:

m = mS 6∪©Xβ. (29)

Now, much as discounting is a particular case of CD, it is natural to view de-
discounting as a particular case of the following operation that may be called contextual
de-discounting (CdD).

Definition 7 (Contextual de-discounting). Let mS be a MF. Its correction using con-
textual de-discounting, given a set A of contexts with associated parameters βA ∈ (0, 1],
for all A ∈ A, is defined as the following MF m:

m = mS 6∪©A∈AAβA . (30)

The interpretation of CdD is similar to that of de-discounting and of CD: it amounts
to the removals of |A| independent BBCs, where for each context A the source was
assumed to be truthful with mass βA and a negative liar in A with mass 1−βA. Example
15 illustrates CdD.

Example 15. Let mS be an uncertain testimony provided by a source S on X =
{Peter, John,Mary}. An agent Ag believes that S lies intentionally, and more specifi-
cally that it negatively lies for Peter and John with mass 0.4.

In other words, Ag assumes that S is subject to a contextual lie of the form “nega-
tively non truthful in A” for context {Peter, John} with mass 1 − β{Peter,John} = 0.4.
From Proposition 7, the agent’s belief mAg on X is then defined by:

mAg = mS ∪©{Peter, John}0.6.

Suppose that an agent Ag2 receives from Ag the piece of information mAg. Suppose
further that Ag2 does not know what S told to Ag, i.e., he does not know mS, but
he knows Ag’s meta-knowledge on the source, and he thinks that it is wrong, since he
believes that the source tells a negative lie for Peter and John with mass 0.2.

This amounts to applying to mAg a contextual de-discounting given context {Peter, John}
with parameter β{Peter,John} = 0.6 (in order to remove the correction performed by
Ag on the testimony of the source), and then a contextual discounting given context
{Peter, John} with parameter β{Peter,John} = 0.8, i.e.,

mAg2 = (mAg 6∪©{Peter, John}0.6) ∪©{Peter, John}0.8,

26



or, equivalently, applying to mAg a contextual de-discounting given context {Peter, John}
with parameter β{Peter,John} = 0.75, i.e.,

mAg2 = mAg 6∪©{Peter, John}0.75,

since for any two functions7 Av1 : 2X → R and Av2 : 2X → R defined by, for i = 1, 2:

Avi : A 7→ 1− vi,
∅ 7→ vi,

B 7→ 0 ∀B ∈ 2X \ {A, ∅} , (31)

for some A ⊃ ∅ and some vi ∈ (0,+∞), we have [6]:

Av1 ∪©Av2 = Av1·v2 , (32)

Av1 6∪©Av2 = Av1/v2 . (33)

Let us now consider CR. CR for A = {∅} amounts to m = mS ∩©∅β, i.e., a process
that redistributes a portion 1 − β of the masses given to the non empty sets, to the
empty set. In other words, CR for A = {∅} is the dual of discounting and may thus
simply be called reinforcement hereafter. Its inverse is defined by m = mS 6∩©∅β, and
may be called de-reinforcement.

Remark 8. Normalization (1) may be expressed as [6]: m∗ = m 6∩©∅1−m(∅) and corre-
sponds thus to the de-reinforcement of MF m with degree β = 1−m(∅). Its dual is called
maximal de-discounting [7], and corresponds to setting β = 1−mS(X ) in (29).

Similarly as for de-discouting and CdD, de-reinforcement is a particular case of the
following operation that may be called contextual de-reinforcement (CdR):

Definition 8 (Contextual de-reinforcement). Let mS be a MF. Its correction using
contextual de-reinforcement, given a set A of contexts with associated parameters βA ∈
(0, 1], for all A ∈ A, is defined as the following MF m:

m = mS 6∩©A∈AA
βA . (34)

The interpretation of CdR is similar to that of CdD, and CdR may be illustrated
using a similar example as Example 15.

Remark 9. As for other computations involving decombination rules 6∩© and 6∪©, we
note that CdD (30) and CdR (34) may not always yield a belief function, hence they
should be used with care. For instance, as recalled in Section 2.2, for de-discounting
(29) to yield a belief function, it is necessary that 1−mS(X ) ≤ β ≤ 1.

Figure 2 synthesizes the relations between CD, CR, CdD and CdR.

7Such function is called a negative generalized MF in [6]. It is used here only as a formal and useful
tool to simplify the presentation.
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Figure 2: Relationships between the four contextual correction mechanisms.

6.2 Contextual corrections based on the canonical decompositions

Let us now consider a correction of a MF mS resulting in a MF m, and involving both a
CD (17) and a CdD (30), with associated sets of contexts Ac and Ad, respectively, and
associated degrees of belief βcA ∈ (0, 1), A ∈ Ac, and βdA ∈ (0, 1), A ∈ Ad, respectively,
i.e., the operation

m = mS ∪©A∈AcAβcA 6∪©A∈AdAβdA
, (35)

such that Ac ∩ Ad = ∅ and such that these CD and CdD together form a disjunctive
canonical decomposition, i.e., the function m∪ defined by

m∪ = ∪©A∈AcAβcA 6∪©A∈AdAβdA
,

is a (non normal) mass function.
Equation (35) defines clearly an extension of CD, which is recovered if Ad = ∅. It

will be referred to as contextual discounting based on the canonical decomposition in the
remainder of this paper and abbreviated by CD+.

Definition 9 (Contextual discounting based on the canonical decomposition). Let mS be
a MF. Its correction using contextual discounting based on the canonical decomposition,
given sets of contexts Ac and Ad and associated degrees βcA ∈ (0, 1), A ∈ Ac, and βdA ∈
(0, 1), A ∈ Ad, such that Ac ∩ Ad = ∅8 and such that

m∪ = ∪©A∈AcAβcA 6∪©A∈AdAβdA
,

is a non normal mass function, is defined as the following MF m:

m = mS ∪©m∪.

8This condition is not strictly needed. It is imposed in this definition, so that each couple (Ac,Ad)
with associated degrees βcA, A ∈ Ac, and βdA, A ∈ Ad, uniquely defines a CD+ correction of a MF
mS . Indeed, for each couple (Ac,Ad) such that Ac ∩ Ad = ∅, there exists an infinity of couples

(Ac
′
,Ad

′
) with associated degrees βc

′
A ∈ (0, 1), A ∈ Ac

′
, and βd

′
A ∈ (0, 1), A ∈ Ad

′
, such that Ac

′
∩Ad

′
6=

∅, satisfying ∪©A∈AcAβc
A
6∪©A∈AdAβd

A
= ∪©A∈Ac′Aβc′

A
6∪©A∈Ad′Aβd′

A
, which is a consequence of (33).

Besides, for any two couples (Ac,Ad) and (Ac
′
,Ad

′
) such that Ac ∩ Ad = ∅ and Ac

′
∩ Ad

′
= ∅, we

have ∪©A∈AcAβc
A
6∪©A∈AdAβd

A
= ∪©A∈Ac′Aβc′

A
6∪©A∈Ad′Aβd′

A
iff Ac = Ac

′
, Ad = Ad

′
, βcA = βc

′
A for each

A ∈ Ac and βdA = βd
′
A for each A ∈ Ad, which follows from the uniqueness of the disjunctive canonical

decomposition.
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Let us note that, by definition, a given CD based on the canonical decomposition
can be applied to any MF mS since it amounts simply to the disjunctive combination
of mS with another (non normal) MF, contrary to a given contextual de-discounting,
which validity is dependent on the MF mS to be corrected (cf Remark 9).

CD+ is a correction that is relevant if an uncertain testimony must be both dis-
counted for some contexts and de-discounted for some other contexts, which may hap-
pen when one believes that this testimony is the result of an initial piece of information
that has not been properly contextually discounted as illustrated by Example 16.

Example 16 (Example 15 continued). Let us consider again the setting of Example
15, but this time assumes that Ag2 thinks Ag is wrong about the behavior of S, and
in particular that the source tells actually a negative lie for Peter with mass 0.6, and
independently a negative lie for John with mass 0.7.

This amounts to applying to mAg a contextual de-discounting given context {Peter, John}
with parameter β{John} = 0.6 (in order to remove the correction performed by Ag on
the testimony of the source), and then a contextual discounting given contexts A =
{{Peter}, {John}} with associated parameters β{Peter} = 0.4 and β{John} = 0.3, i.e.,

mAg2 = (mAg 6∪©{Peter, John}0.6) ∪©{Peter}0.4 ∪©{John}0.3,

or, equivalently, combining disjunctively mAg with a non normal MF m∪:

mAg2 = mAg ∪©m∪,

with m∪ defined by

m∪ = ({Peter}0.4 ∪©{John}0.3) 6∪©({Peter, John}0.6).

Remark 10. From a formal point of view, CD+ (35) can be equivalently presented as,
using (32) and (33):

m = mS ∪©A∈AAβA , (36)

with A = Ac ∪Ad and with βA = βcA if A ∈ Ac and βA = 1/βdA if A ∈ Ad, for all A ∈ A
(hence βA ∈ (0,+∞)). In other words, CD+ has the same definition as CD (17), except
that we may have βA > 1, for some A ∈ A. This technical remark will be useful later
for a technical result (Remark 12 in Section 8).

Of course, a similar reasoning can be followed to introduce the dual notion of con-
textual reinforcement based on the canonical decomposition denoted by CR+: formally,
it is simply the combination by ∩© of MF mS with a non dogmatic MF m∩.

Definition 10 (Contextual reinforcement based on the canonical decomposition). Let
mS be a MF. Its correction using contextual reinforcement based on the canonical decom-
position, given sets of contexts Ac and Ad and associated degrees βcA ∈ (0, 1), A ∈ Ac,
and βdA ∈ (0, 1), A ∈ Ad, such that Ac ∩ Ad = ∅ and such that

m∩ = ∩©A∈AcA
βcA 6∩©A∈AdA

βdA ,

is a non dogmatic mass function, is defined as the following MF m:

m = mS ∩©m∩.
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CR+ extends CR since CR amounts to the combination with a ∩©-separable MF,
that is, CR is a CR+ such that Ad = ∅. CR+ is a correction that is sensible if MF mS

provided by the source must be both reinforced for some contexts Ac and de-reinforced
for some other contexts Ad, and may be illustrated similarly as CD+ (cf Example 16
for the illustration of CD+).

Remark 11. A counterpart to Remark 10 exists for CR+. Indeed, by extending the
notation Aw to the case where w ∈ (0,+∞), similarly as notation Av is extended in
(31) to v ∈ (0,+∞), and using the ∩©-counterparts of (32) and (33) shown in [34],
CR+ can be equivalently presented as:

m = mS ∩©A∈AA
βA , (37)

with A = Ac ∪Ad and with βA = βcA if A ∈ Ac and βA = 1/βdA if A ∈ Ad, for all A ∈ A
(hence βA ∈ (0,+∞)). CR+ has then the same definition as CR, except that we may
have βA > 1, for some A ∈ A. This will be useful later for a technical result (Remark
13 in Section 8).

This section has introduced extensions of CD and CR, by exploiting the fact that the
assumptions made by a given CD or CR, can be readily seen through the definition of
this CD or CR: the assumptions correspond to the simple MFs in said definition. Hence,
thanks to the inverse rules 6∪© and 6∩©, it becomes possible to remove such assumptions
if one believes that they are no longer tenable, which amounts to a so-called contextutal
de-correction. In the next section, yet another way of extending CD and CR is studied:
it is based on exploiting the state `A introduced in Section 3.

7 Contextual negating

In this section, we introduce a new contextual correction scheme, which is formally
similar to the two existing ones and that is related to the negating operation.

7.1 Non truthful in A

As shown in Section 5, CD and CR result from corrections induced by simple pieces
of meta-knowledge mHA,∪ (27) and mHA,∩ (24) relying on contextual biases nA and pA,
respectively. In practice, these two states transform a testimony x ∈ B into B ∪A and
B ∩A, respectively.

In Section 3, a third natural contextual lie, state `A, which corresponds to assuming
that the source is non truthful in A, was brought to light and studied. This state
yields x ∈ B ∩A from a testimony x ∈ B. Interestingly, the properties satisfied by ∩
(associativity, commutativity, neutral element) allow us to obtain similar propositions
as those obtained for CR and CD (the proofs of those propositions are similar to the
ones of CR and CD, and are thus omitted).

Proposition 8. Let mS be the MF provided by a source S and let mHA,∩ be our meta-
knowledge on the source defined by

mHA,∩({t}) = βA, mHA,∩({`A}) = 1− βA, (38)
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i.e., with mass βA the source is truthful, and with mass 1− βA it is non truthful in A.
We have

fmH
A,∩

(mS) = mS ∩©AβA .

Proposition 9. Let mS be a MF. We have, ∀A and with βA ∈ [0, 1], ∀A ∈ A:

mS ∩©A∈AA
βA = (◦A∈A fmH

A,∩
)(mS), (39)

where mass functions mHA,∩, A ∈ A, are defined by (38).

Equation (39) is the ∩ counterpart to Equations (28) and (25), which are based on
∪ and ∩, respectively. It constitutes a contextual correction, which, similarly to CD and
CR, amounts to independent BBCs – one for each context – corresponding to simple
contextual biases. The only difference with CD and CR is what is assumed with mass
1− βA: that the source is non truthful in A.

An interesting fact can be brought to light about this contextual correction.

Proposition 10. For any MF mS, we have

mS ∩©∅β = β ·mS + (1− β) ·mS . (40)

Proof. This proposition follows from Proposition 8 and Remark 1.

This proposition shows that negating (16) is a particular case of the contextual
correction (39): it is recovered for A = {∅}, as should be since contextual correction
(39) reduced to A = {∅} corresponds to assuming that the source is truthful with mass β
and non truthful with mass 1−β, which is the meta-knowledge associated to the negating
operation. Contextual correction (39) constitutes thus a similar extension with respect
to negating, than CD is to discounting and CR is to reinforcement. It may therefore be
seen as a contextual version of negating and be called contextual negating (CN).

Definition 11 (Contextual negating). Let mS be a MF. Its correction using contextual
negating, given a set A of contexts with associated parameters βA ∈ [0, 1], for all A ∈ A,
is defined as the following MF m:

m = mS ∩©A∈AA
βA .

We note that the computational complexity of CN is similar to that of CD and CR:
it merely corresponds to the complexity of applying |A| combinations by the ∩© rule.

Furthermore, similar examples as Examples 13 and 14 can easily be constructed to
illustrate situations where CN may be needed.

7.2 Discussion

Let us briefly emphasize the similarities and differences between CD and the new con-
textual correction mechanism uncovered above that is CN.

In their non contextual version, they reduce to discounting and negating, respec-
tively. Discounting is the correction mechanism derived from basic assumptions about
the relevance of the source, whereas negating originates from basic assumptions about
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the truthfulness of the source. Alternatively, as pointed out by Remark 5, discounting
can also be viewed as a relaxed form of negating, in that it may also be recovered from
assumptions about the truthfulness of the source that are less strong than those yielding
negating. These two mechanisms differ partially in how they treat a testimony x ∈ B:
they both keep mass β on B, and discounting transfers mass 1− β to X whereas negat-
ing transfers it to B; this comes from the fact that we deduce either x ∈ X or x ∈ B
depending on whether we think the source is non relevant (or negatively non truthful,
see Remark 5) or non truthful. As extensions of discounting and negating, CD and CN
are thus clearly fundamentally different operations.

Furthermore, in essence, given a context A and testimony x ∈ B, both CD and CN
keep mass βA on B, and CD transfers mass 1−βA to B ∪A, whereas CN transfers it to
B ∩A, so that in practice the difference between the two mechanisms is what happens
with mass 1− βA: with CD, it is assumed that at least one of the pieces of information
x ∈ B and x ∈ A is true, whereas with CN, we have that either both or none of these
pieces of information are true.

Let us finally remark that, similarly as inverses of ∩© and ∪© can be defined from
pointwise divisions of commonality and implicability functions, respectively, it is in
principle possible to define the inverse of the rule ∩© from pointwise division of the
so-called 0-commonality function [26, 24], which is the counterpart of the commonality
and implicability functions for the rule ∩©. Hence, in principle, it is possible to define
a notion of contextual de-negating as well as a more general form of CN similar to the
more general forms of CD and CR obtained in Section 6. However, for the definition of
the inverse of the rule ∩© to be usable in practice, one needs to know under which simple
conditions the 0-commonality function does not equal to 0, since divisions by zeros must
be avoided, similarly as it is known that the commonality and implicability functions
are different from 0 as long as the MF is non dogmatic or non normal, respectively.
Unfortunately, we have not been able so far to find such simples conditions for the
0-commonality function. This is left for further research.

This section has introduced a new contextual correction, which is formally similar to
CD and CR and that is related to the negating operation. All three of these mechanisms
stem from uncertain knowledge about the behavior of the source, which reduce to a set
of context A and associated parameters βA, A ∈ A. Next section presents a method to
derive such knowledge from labelled data.

8 Learning contextual biases of a source from labelled data

For contextual correction mechanisms to be useful in applications, one needs practical
means to choose the set of contexts A and to determine the associated vector β =
(βA, A ∈ A). As already mentioned in Section 1, the set A and vector β could be learnt
from available labelled data, and in particular using methods based on the minimization
of an error criterion. This latter type of methods is considered in this section.

8.1 Description of the learning process

Let us assume that a training set describing the outputs of a source (expressed in the
form of a MF) regarding the classes in X = {x1, . . . , xK} of n objects oi, i ∈ {1, . . . , n},
is available. Small illustrative examples of such training sets are given in Table 4 for two
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Table 4: Ouputs of two sensors regarding the classes of 4 objects which can be airplanes
(a), helicopters (h) or rockets (r). Data come from [12, Table 1].

a h r {a, h} {a, r} {h, r} X Ground
truth

Sensor 1

mS1{o1} 0 0 0.5 0 0 0.3 0.2 a
mS1{o2} 0 0.5 0.2 0 0 0 0.3 h
mS1{o3} 0 0.4 0 0 0.6 0 0 a
mS1{o4} 0 0 0 0 0.6 0.4 0 r

Sensor 2

mS2{o1} 0 0 0 0.7 0 0 0.3 a
mS2{o2} 0.3 0 0 0.4 0 0 0.3 h
mS2{o3} 0.2 0 0 0 0 0.6 0.2 a
mS2{o4} 0 0 0 0 0 1 0 r

sensors in charge of recognizing flying objects which can be airplanes (a), helicopters
(h) or rockets (r).

Inspired from previous work in pattern recognition [41], Elouedi et al. [12] propose
a method to automatically compute, from such a training set, the degree of reliability
β ∈ [0, 1] of the classical discounting operation (11). This scalar β is chosen as the
one which minimizes the following measure of discrepancy between the corrected source
outputs and the reality:

Ebet(β) =

n∑
i=1

K∑
k=1

(BetP{oi}(xk)− δi,k)2, (41)

where ∀i ∈ {1, . . . , n}, BetP{oi} is the pignistic probability [38] associated with the MF
m{oi} obtained from a discounting with a degree of reliability β of the output mS{oi} of
the source S regarding the class of object oi, and δi,k is a binary variable that indicates
the class of object oi as follows: ∀k ∈ {1, . . . ,K}, δi,k = 1 if object oi belongs to the
class xk, and δi,k = 0 otherwise.

The main idea is to find the reliability degree β ∈ [0, 1] that will bring on average,
after correction, the outputs of a source closer to the reality.

In [23], it has been shown that this measure of discrepancy (41) can serve as well
to learn the vector β = (βA ∈ [0, 1], A ∈ A), A forming a partition of X , of reliability
degrees of a contextual discounting based on a coarsening, once a partition (a set of
contexts) A has been fixed.

Moreover, it has also been proposed in [23] to learn this latter vector β using another
measure of discrepancy based on the plausibility function and defined by:

Epl(β) =

n∑
i=1

K∑
k=1

(pl{oi}({xk})− δi,k)2 , (42)

where ∀i ∈ {1, . . . , n}, pl{oi} is the plausibility function obtained from a contextual
discounting based on a coarsening A of X , with a vector β = (βA ∈ [0, 1], A ∈ A)
of reliability degrees, of mS{oi}. This measure allows one to express the problem of
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reliability degrees computation in a more efficient way than (41) does, specifically a
constrained least-squares problem [23, Section 5.1]. However, the problem of finding the
optimal partition A of X for a given source, that is the one minimizing (42), was left
open.

In the remainder of this section, we propose to study and refine the above process to
automatically learn CD, CR and CN. Precisely, in Section 8.2, we consider the learning
of CD with an arbitrary set of contexts A (17) (i.e, the more general CD that does
not require the set of contexts A to form a partition of X ), and of CD+ (35) (i.e.,
CD based on the canonical decomposition), using the measure of discrepancy Epl (42).
In Sections 8.3 and 8.4, similar investigations are pursued for the learning of CR and
CN respectively. Learning of CD, CR and CN is then illustrated and commented in
Section 8.5. Finally, we show in Section 8.6 that this learning approach may be useful
to improve the performance of a source in a classification application.

We remark beforehand that our choice to use measure Epl (42) in our investiga-
tions is explained by four main reasons. First, this measure was the preferred one in
the approach proposed in [23], which we are clearly extending with this current work.
Second, using the plausibility on singletons is in accordance with the Shafer [32] and
Smets [39] singular [8] interpretation of belief functions adopted in this paper, where
one searches to know the actual value of x. Third, as will be seen later, it is possible
to obtain simple analytical expressions showing how the parameters βA of CD, CR and
CN, affect the plausibility of singletons, which can be quite helpful when analyzing the
respective capacities of these mechanisms to improve a source performance. At last, as
it will also be seen later, it can be shown that there exists actually an optimal set of
contexts for each of CD, CR and CN, that ensures the minimization of the measure, and
that finding this minimum amounts to a computationally simple optimization problem
(a constrained least-squares problem with |X | unknowns). To sum up, we chose Epl
to ensure: continuity with previous works, conformance with the belief function theory
interpretation used in this paper, ease of analysis and ease of optimization. Yet, we note
that other measures of discrepancy could be used, e.g., the measure Ebet (41) or a mea-
sure based on a distance [15], but then it is neither guaranteed that their minimization
can be performed efficiently nor guaranteed that it will be easy to analyse how CD, CR
and CN affect them. Let us finally mention that if the measure of discrepancy is used
to optimize some decision system, then this measure should be related to the chosen
decision rule; for instance, the measure Ebet (41) should be used in conjunction with
decisions based on pignistic probability, and Epl (42) should be used, as done in Section
8.6, for decisions based on the plausibility transformation [2], which transforms a belief
function into a probability distribution by normalizing the plausibilities on singletons.

8.2 Learning contextual discounting

In this section, the learning of CD according to the plausibility based measure of discrep-
ancy (42) is studied, first for the case of CD defined by (17), which means a contextual
discounting of the following form: m = mS ∪©mC , with mC a ∪©-separable MF.

The main issue here is to decide which set A to consider and to find the associated
vector β that minimize measure (42). To try and solve this issue, we can first remark
that this latter measure requires that the plausibilities on singletons after having applied
such a CD defined by (17), be known. These plausibilities are given in the following
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proposition.

Proposition 11. Let m = mS ∪©A∈AAβA, βA ∈ [0, 1], for all A ∈ A, be the CD of a
MF mS. The plausibility function associated with m is defined for all x ∈ X by:

pl({x}) = 1− (1− plS({x}))
∏

A∈A,x∈A
βA . (43)

Proof. As m = mS ∪©mC , with mC = ∪©A∈AAβA , CD is given in terms of implicability
functions by:

b = bS · bC (44)

= bS
∏
A∈A

bβA ,

with, for all B ⊆ X , bβA(B) = 1 if A ⊆ B, bβA(B) = βA otherwise. Thus, for all B ⊆ X :

b(B) = bS(B)
∏

A∈A,A 6⊆B
βA. (45)

Consequently, for all x ∈ X :

pl({x}) = 1− b({x}) = 1− bS({x})
∏

A∈A,A 6⊆{x}

βA (From (45))

= 1− bS({x})
∏

A∈A,x∈A
βA = 1− (1− plS({x}))

∏
A∈A,x∈A

βA. (46)

Proposition 11 is illustrated by Example 17.

Example 17. Let X = {x1, x2, x3} and consider the CD of a MF mS with various sets
of contexts A:

• If A = {{x1}, {x2}, {x3}}, then we have:

pl({x1}) = 1− (1− plS({x1}))β{x1},
pl({x2}) = 1− (1− plS({x2}))β{x2},
pl({x3}) = 1− (1− plS({x3}))β{x3}.

• If A = 2X , then we have:

pl({x1}) = 1− (1− plS({x1}))β{x1}β{x1,x2}β{x1,x3}β{x1,x2,x3},
pl({x2}) = 1− (1− plS({x2}))β{x2}β{x1,x2}β{x2,x3}β{x1,x2,x3},
pl({x3}) = 1− (1− plS({x3}))β{x3}β{x1,x3}β{x2,x3}β{x1,x2,x3}.

• If A = {{x2}}, then we have:

pl({x1}) = plS({x1}),
pl({x2}) = 1− (1− plS({x2}))β{x2},
pl({x3}) = plS({x3}).
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Next proposition indicates that the minimization of Epl when CD has been applied,
is obtained using the vector β composed of the K parameters β{xk}, which means the
parameters associated with the singletons of X . Moreover the minimization of Epl using
this vector constitutes a constrained least-squares problem which can then be solved
efficiently using standard algorithms.

Proposition 12. The minimization of Epl with CD is obtained using the vector β =
(β{xk} ∈ [0, 1], k ∈ {1, . . . ,K}) and constitutes a constrained least-squares problem as
(42) can then be rewritten as:

Epl(β) = ‖Qβ − d‖2 with Q =

 diag(pl1 − 1)
...

diag(pln − 1)

 and d =

 δ1 − 1
...

δn − 1

 , (47)

with diag(v) a square diagonal matrix with the elements of vector v on the main diago-
nal, and with pli = (plS{oi}({x1}), . . . , plS{oi}({xK}))T , and δi = (δi,1, . . . , δi,K)T the
column vector of 0-1 class indicator variables for object oi.

Proof. From Proposition 11, after having applied CD on mS , the discrepancy measure
Epl (42) can be written: Epl(β) =

∑K
k=1Epl(β, xk), with for all k ∈ {1, . . . ,K}:

Epl(β, xk) :=

n∑
i=1

1− (1− plS{oi}({xk}))
∏

A∈A,xk∈A
βA

− δi,k
2

. (48)

As Epl(β, xk) ≥ 0 for all k ∈ {1, . . . ,K}, the minimum value of Epl(β) is obtained
when each Epl(β, xk) reaches its minimum.

Besides, from (44), (45) and (46), the product
∏
A∈A,xk∈A βA of coefficients βA in

Epl(β, xk) (48) is equal to bC(xk) for all k ∈ {1, . . . ,K}, bC being the implicability
function associated with mC = ∪©A∈AAβA , and belongs then to [0, 1] and can be denoted
by a variable βk ∈ [0, 1]. Hence, for each k ∈ {1, . . . ,K}, the minimum of Epl(β, xk) is
reached for a particular value of βk.

Now, we can remark that each coefficient β{xk}, k ∈ {1, . . . ,K}, only appears in
the expression of Epl(β, xk) (48), k ∈ {1, . . . ,K}. Hence, choosing βk = β{xk} for all
k (which means choosing A composed of the set of singletons of X ) constitutes then a
solution, i.e., a set of contexts for which the minimum value of Epl(β) is reached.

Each value of Epl is then reachable using the vector β of coefficients βk := β{xk},
k ∈ {1, . . . ,K}, and as already mentioned in [23, Section 5.1], the computation of the
coefficient β with CD based on the singletons is a constrained least-squares problem.
Indeed, for all k ∈ {1, . . . ,K}, and for all i ∈ {1, . . . , n}:

pl{oi}({xk})− δi,k = 1− (1− plS{oi}({xk}))βk − δi,k
= (plS{oi}({xk})− 1)βk − (δi,k − 1) .

Then (42) can be rewritten as (47).

This answers a prospect given in [23] concerning the study of the set of contexts which
yields the best possible value for the measure of discrepancy Epl. The answer given here
is that there will be no smaller value reachable for Epl than the one obtained with the
set of the singletons of X with associated coefficients β = (β{xk}, k ∈ {1, . . . ,K}).

36



Remark 12. If the more general CD based on the canonical decomposition (cf Sec-
tion 6.2) is applied, namely a CD defined by: m = mS ∪©mC with mC a non normal
MF, the results of this learning (optimisation in the sense of (42)) will still be the same,
that is to say a constrained least-squares problem of the form (47) with |X | unknowns
β{xk} ∈ [0, 1]. Indeed, from (44), (45) and (46), the product

∏
A∈A,xk∈A βA is equal to

bC(xk), bC being the implicability function associated with mC , and belongs then to [0, 1]
and thus Proposition 12 also holds for this more general CD. This allows us to remark
that the degrees of freedom added by the possibility of having βA > 1 are actually useless9

to improve the measure (42).

8.3 Learning contextual reinforcement

With the same idea but in a reinforcement context, we study in this section the learning
of CR according to the plausibility based measure of discrepancy (42).

Plausibilities on the singletons after having applied CR are given in next proposition.

Proposition 13. Let m = mS ∩©A∈AA
βA, βA ∈ [0, 1], for all A ∈ A, be the CR of a

MF mS. The plausibility function associated with m is defined for all x ∈ X by:

pl({x}) = plS({x})
∏

A∈A,x 6∈A
βA .

Proof. As m = mS ∩©mC , with mC = ∩©A∈AA
βA , the CR is determined in terms of

commonality functions by:

q = qS · qC (49)

= qS
∏
A∈A

qβA

with, for all B ⊆ X , qβA(B) = 1 if B ⊆ A, qβA(B) = βA otherwise. Then, for all B ⊆ X :

q(B) = qS(B)
∏

A∈A,B 6⊆A
βA, (50)

which means that after having applied CR, plausibilities on singletons are defined, for
all x ∈ X , by:

pl({x}) = q({x}) = qS({x})
∏

A∈A,x 6∈A
βA

= plS({x})
∏

A∈A,x 6∈A
βA. (51)

Example 18. Let X = {x1, x2, x3} and consider the CR of a MF mS with various sets
of contexts A:

9However, this more general form of CD may be useful considering other discrepancy measures (and
it may be, of course, potentially useful outside of a learning context, to model richer knowledge about
the behavior of the source than what is allowed by the less general forms of CD).
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• If A = {{x1, x2}, {x1, x3}, {x2, x3}}, then we have:

pl({x1}) = plS({x1})β{x2,x3},
pl({x2}) = plS({x2})β{x1,x3},
pl({x3}) = plS({x3})β{x1,x2}.

• If A = 2X , then we have:

pl({x1}) = plS({x1})β∅β{x2}β{x3}β{x2,x3},
pl({x2}) = plS({x2})β∅β{x1}β{x3}β{x1,x3},
pl({x3}) = plS({x3})β∅β{x1}β{x2}β{x1,x2}.

Proposition 14. The minimization of Epl with CR is obtained using the vector β =
(β{xk} ∈ [0, 1], k ∈ {1, . . . ,K}) and constitutes a constrained least-squares problem as

(42) can then be written as:

Epl(β) = ‖Pβ − δ‖2, with P =

 diag(pl1)
...

diag(pln)

 and δ =

 δ1
...
δn

 , (52)

with the same notations as in Proposition 12.

Proof. From Proposition 13, for each k ∈ {1, . . . ,K}, coefficient β{xk} only appears

in pl(xk) when a CR has been applied. Then, with the same reasoning as for the
CD case, the minimum value of Epl with CR can be reached using the set of contexts
{xk = X \ {xk}, k ∈ {1, . . . ,K}}.

The minimization of Epl with CR based on the vector β = (βk := β{xk}, k ∈
{1, . . . ,K}) is also a constrained least-squares problem as (42) can be written as (52) (as
∀k ∈ {1, . . . ,K} and ∀i ∈ {1, . . . , n}, pl{oi}({xk})− δi,k = plS{oi}({xk})βk − δi,k).

Remark 13. As was the case for CD (Remark 12), if CR based on the canonical de-
composition is used, namely: m = mS ∩©mC with mC a non dogmatic MF, the learning
in the sense of (42) will still yield to the learning of |X | parameters β{xk} ∈ [0, 1], as

from (49), (50) and (51), for all x ∈ X ,
∏
A∈A,x 6∈A βA = qC({x}) ∈ [0, 1], and thus

Proposition 14 also holds for this more general form of CR. .

8.4 Learning contextual negating

The learning of CN is explored in this section.
The plausibilities on the singletons after having applied CN are given in the next

proposition.

Proposition 15. Let m = mS ∩©A∈AA
βA with βA ∈ [0, 1], for all A ∈ A, be the CN of

a MF mS. The plausibility function associated with m is defined for all x ∈ X by:

pl({x}) = 0.5 + 0.5 · (2 · plS({x})− 1)
∏

A∈A,x 6∈A
(2 · βA − 1). (53)
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Proof. See Appendix C.

Proposition 16. The minimization of Epl with CN is obtained using the vector β =
(β{xk} ∈ [0, 1], k ∈ {1, . . . ,K}) and constitutes a constrained least-squares problem as

(42) can then be written as:

Epl(β) = ‖Dβ − z‖2, with D =

 diag(2pl1 − 1)
...

diag(2pln − 1)

 and z =

 pl1 + δ1 − 1
...

pln + δn − 1

 , (54)

with the same notations as in Proposition 12.

Proof. The proof is similar to those of Propositions 12 and 14, and uses the fact that
from Proposition 15 we obtain pl{oi}({xk}) = 0.5 + (plS{oi}({xk}) − 0.5)(2β{xk} − 1),

∀k ∈ {1, . . . ,K} and ∀i ∈ {1, . . . , n}, which allows us to rewrite (42) as (54).

8.5 Comments and illustration

In this section, some comments are first made on the respective correction capacities
of CD, CR and CN, with respect to the discrepancy measure (42) and taking into
consideration the findings of Propositions 12, 14 and 16. Then, an illustrative example
of the proposed learning of CD, CR and CN, is given. This example is also useful to make
insightful additional remarks on CD, CR and CN, with respect to source performance
improvement.

8.5.1 Correction capacities

The plausibility ranges on singletons after having applied CD, CR and CN are given by
Remarks 14, 15 and 16, respectively.

Remark 14. With CD, as pl({x}) = 1 − (1 − plS({x}))β{x} for each x ∈ X , with
β{x} varying in [0, 1], pl({x}) can take any values in the interval [plS({x}), 1]. It means
that with CD, the plausibility plS({x}) on each singleton can be shifted as close to 1 as
required.

Remark 15. With CR, as pl({x}) = plS({x})β{x} for each x ∈ X , with β{x} varying

in [0, 1], pl({x}) can take any values in [0, plS({x})]. In other words, with CR, the
plausibility plS({x}) on each singleton can be carried as close to 0 as necessary.

Remark 16. With CN, as pl({x}) = 0.5 + (plS({x})− 0.5)(2β{x} − 1) for each x ∈ X ,

with β{x} varying in [0, 1], pl({x}) can take any values in the interval [min(plS({x}), 1−
plS({x})),max(plS({x}), 1 − plS({x}))]. It is of particular interest if plS({x}) is close
to 0 or on the contrary close to 1 meaning that in these cases plS({x}) can be moved to
any values in [0, 1]. However if plS({x}) is close to 0.5, CN is not able to change its
value which is confined around 0.5.

The following example illustrates these different capacities of adjustment on simple
scenarios.

39



Table 5: Attainable plausibilities with CD, CR and CN for three sources outputs.

Ground Source CD CR CN Source CD CR CN Source CD CR CN
truth n◦1 n◦2 n◦3

pl({a}) 1 0 1 0 1 0 1 0 1 1 1 1 1
pl({b}) 0 1 1 0 0 0 0 0 0 1 1 0 0
pl({c}) 0 1 1 0 0 1 1 0 0 0 0 0 0

CD: Epl = 2 CD: Epl = 1 CD: Epl = 1
CR: Epl = 1 CR: Epl = 1 CR: Epl = 0
CN: Epl = 0 CN: Epl = 0 CN: Epl = 0

Example 19. Let X = {a, b, c} and suppose, without lack of generality, that the ground
truth is a.

Suppose a source n◦1 outputs a mass mS({b, c}) = 1 which means that plS({a}) = 0
and plS({b}) = plS({c}) = 1. From Remarks 14, 15 and 16, to bring source n◦1 output
closer to the ground truth: CD can increase plS({a}) to 1; CR can decrease plS({b})
to 0 and plS({c}) to 0; CN can increase plS({a}) to 1 and decrease plS({b}) to 0 and
plS({c}) to 0.

This case is presented again in Table 5, where two more situations are considered: a
source n◦2 giving mS({c}) = 1, that is plS({a}) = plS({b}) = 0 and plS({c}) = 1, and a
source n◦3 giving mS({a, b}) = 1, that means plS({a}) = plS({b}) = 1 and plS({c}) = 0.

As it can be observed in Table 5, CD can improve only one value of plausibility: the
plausibility on the ground truth by increasing it as close as possible to 1, whereas CR
can improve the other plausibility values (the ones not associated with the ground truth)
by decreasing them as near as possible to 0. In contrast, CN can improve all plausibility
values, by increasing the plausibility on the ground truth up to 1 and by decreasing the
other possibilities down to 0. CR has then more degrees of flexibility than CD to improve
the plausibility output of the source, and CN has in turn one more degree of flexibility
than CR, on these three particular cases. As a result, we can see in Table 5 that for each
source, CN has a lower (or equal) Epl than CR, which in turn has a lower (or equal)
Epl than CD.

Let us note however that there exist situations where CD may be of more help than
CR and CN, in particular those where all the plausibilities on singletons which are not
the ground truth are below 0.5, i.e., plS({b}) < 0.5 and plS({c}) < 0.5, and where the
plausibility on the ground truth is above 0.5, i.e., plS({a}) > 0.5. In such a situation,
using Remark 14, the lowest possible Epl for CD, denoted by ECDpl , is attained with vector

β = (0, 1, 1), in which case we have ECDpl = (plS({b})2+(plS({c})2. Similarly, the lowest
possible Epl for CR is attained with, using Remark 15, vector β = (1, 0, 0), in which case
ECRpl = (1 − plS({a}))2. Concerning CN, using Remark 16, the lowest possible Epl is

ECNpl = (plS({b})2 + (plS({c})2 + (1 − plS({a}))2 which is attained for β = (1, 1, 1).

We thus see that in such a situation, we have necessarily ECDpl < ECNpl and ECRpl <

ECNpl . Besides, we also have ECDpl < ECRpl if (plS({b})2 + (plS({c})2 < (1 − plS({a})2;
an example of a source output satisfying this latter inequality is: mS({a}) = 0.6 and
mS({b}) = mS({c}) = 0.2.
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Table 6: Results for the minimization of Epl with the data in Table 4 for each contextual
correction mechanism for both sensors 1 and 2.

Contextual correction Sensor 1 Sensor 2

CD
β = (0.76, 1.00, 1.00) β = (0.74, 1.00, 1.00)
Epl(β) = 3.39 Epl(β) = 4.81

CR
β = (0.94, 0.66, 0.38) β = (0.65, 0.22, 0.55)
Epl(β) = 2.33 Epl(β) = 2.39

CN
β = (0.33, 1.00, 0.45) β = (0.63, 0.06, 0.86)
Epl(β) = 2.59 Epl(β) = 2.25

8.5.2 An illustrative example

Let us consider the data given in Table 4.
Results of the minimization of Epl for CD, CR and CN are summarized in Table 6

for both sensors 1 and 2. Let us recall that β = (β{a}, β{h}, β{r}) for CD, and β =
(β{a}, β{b}, β{c}) for CR and CN, with different meanings and associated transformations

for each vector.
In order to analyze the results presented in Table 6, one may look at the mass trans-

fers associated with these learnt vectors, that is the transformations of the sensor outputs
induced by CD, CR and CN. For instance, the CD learnt vector β = (0.76, 1.00, 1.00)
for sensor 1 indicates that for each B ⊆ X , a portion (1− 0.76 = 0.24) of mass mS(B)
should be transferred to B ∪ {a}. One may also use the interpretation given to the
parameters βA; for instance having β{a} = 0.76 indicates that sensor 1 negatively lies
for airplanes with mass 0.24. Yet, we find it more instructive as well as more appro-
priate considering the discrepancy measure used, to analyze those results in light of the
changes they suggest on the plausibilities given to the singletons by the sensors. We
focus on such an analysis hereafter.

For CD it can be observed that β{h} = β{r} = 1 for both sensors, which means
from the previous Remark 14 that plS({r}) and plS({h}) do not have to be increased to
improve Epl, which is not the case for plS({a}) as it has to be increased since β{h} < 1
(plS({a}) will be increased slightly more for sensor 2 than for sensor 1 since 0.76 >
0.74). This means that the sensors may be considered cautious enough concerning
the plausibilities they allocate to objects of type h and r, but may be a bit too bold
concerning objects of type a. In particular, if for any object to be classified they give a
low plausibility to h or to r then it should be left as is, but if they give a low plausibility
to a then it should be increased.

Based on Remark 15, the CR learnt vector for sensor 1 indicate that plS({a}) should
(almost) not be decreased, whereas plS({h}) and even more plS({r}) have to be de-
creased for this sensor. This means that sensor 1 is bold enough for a, but too cautious
for h and especially too cautious for r. So if sensor 1 gives a high plausibility to h or to
r, then it should be decreased (even more so for r), but a high plausibility on a should
remain roughly as is. Conclusions are different for sensor 2: all plausibilities should be
substantially decreased. Precisely, only 65% of plS({a}) should be left on a, 22% of
plS({h}) should be left on h and 55% of plS({r}) should be left on r.
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Figure 3: Plausibility on a singleton pl({x}) after CN correction of plS({x}), for three
different values of β{x}.

For CN, we know from Remark 16 that we have pl({x}) = 0.5 + (plS({x}) −
0.5)(2β{x} − 1) for each x ∈ X . Figure 3 shows this latter equation for the three values

of β{x} learnt for sensor 2. As it can be seen on this figure, if we have plS({h}) < 0.5 for

sensor 2, then this plausibility on h should be increased, for instance if plS({h}) = 0.2
then this value should be increased to pl({h}) = 0.5 + (plS({h}) − 0.5)(2 · β{h} − 1) =

0.5+(0.2−0.5)(2 ·0.06−1) = 0.764. Conversely, if plS({h}) > 0.5, then this plausibility
on h should be decreased. For a and r, the situation is similar: if the plausibilities on
these singletons are lower than 0.5, then they should be increased, and if they are greater
than 0.5, they should be decreased, albeit with different rates. Of note for sensor 1, is
the fact that plS({h}) should not be altered at all since β{h} = 1 for this sensor, which

is quite different from the situation observed for sensor 2.
This small illustrative example shows that CD, CR and CN yield different tunings of

a source. Perhaps most importantly, on a practical side, Table 6 shows that CR and CN
also permit to obtain lower values for Epl than those reached with CD, for both sensors
1 and 2, which confirms the advantages in some cases of CR and CN over CD exposed
in Example 19 concerning the minimization of Epl. This demonstrates the interest of
investigating alternative correction mechanisms distinct from a discounting process. A
second observation is that a lower value for Epl using CN has been obtained for sensor 2
compared to the value obtained with CR, and conversely a lower value for Epl using CR
has been obtained for sensor 1 compared to the value obtained with CN, which shows
the potential utility of both mechanisms in terms of performance improvement.

Finally, let us note that even if CR and CD are related (CR amounts to the negation
of the CD of the negation of the information provided by the source [20]), CR and
CD parameters minimizing Epl (42) cannot be deduced analytically from each other, as
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illustrated by Example 20, which shows that knowing the vector β minimizing Epl for
CD does not imply knowing the vector β minimizing Epl for CR.

Example 20. Let us modify in Table 4, MF mS1{o1} by

mS1{o1}({r}) = 0.5282,

mS1{o1}({h, r}) = 0.3000,

mS1{o1}(X ) = 0.1718,

i.e., information coming from sensor 1 is slightly deteriorated, the truth being a. Then,
learnings of CD parameters for sensors 1 and 2 yield the same vector β = (0.74, 1.00, 1.00),
while learnings of CR parameters yield β = (0.92, 0.68, 0.38) for sensor 1 and β =
(0.65, 0.22, 0.55) for sensor 2.

8.6 Application in classification

Despite the formal elegance of CD, CR and CN, their usefulness in belief function based
applications might be challenged. Therefore, an experiment is conducted in this section
to demonstrate their ability to improve the performances of an evidential classifier.

The chosen evidential classifier is the evidential k-nearest neighbour classifier (ev-
knn) introduced by Denœux in [5]. It is used on a 5-class classification problem with
data generated from 5 bivariate normal distributions with respective means µx1 = (0, 0),
µx2 = (2, 0), µx3 = (0, 2), µx4 = (2, 2), µx5 = (1, 1) and common variance matrix

Σ =

[
1 0.9

0.9 1

]
.

For each class x ∈ X = {x1, x2, x3, x4, x5}, 1000 instances have been generated. The
total amount of data is then composed of 5000 instances and is illustrated in Figure 4.

The principle of ev-knn [5] is to consider the k-nearest neighbours ni (according to
a distance measure d, e.g., the Euclidean distance), i ∈ {1, . . . , k}, of a new instance
a to be classified, and to build a MF regarding the class of a, which results from the
combination by Dempster’s rule of k MFs mi, i ∈ {1, . . . , k}, each one of these MFs
being associated with a neighbour ni of a, and reflecting a piece of evidence regarding
the class of the instance a to be classified. With xi ∈ X the class of ni, each mi,
i ∈ {1, . . . , k}, is defined in the following manner:

mi(A) =


τ · e−γxi (d(a,ni))

2
if A = {xi},

1− τ · e−γxi (d(a,ni))
2

if A = X ,
0 otherwise,

(55)

with τ a constant in [0, 1], γx a positive constant depending on class x ∈ X , and d a
distance. For each neighbour ni of a, the knowledge of the class xi of ni is a piece of
evidence increasing the belief that the class of a is xi depending on the distance d(a, ni)
between a and ni.

Following the simple heuristic used in [5], τ has been fixed to 0.95 and γx has been
chosen equal to the inverse of the mean distance between each sample of class x, which
belongs to the training set of the classifier ev-knn. The number k of neighbours has
been chosen equal to 3.

43



Figure 4: Illustration of the data generated for a 5-class classification problem with 2
features.

Let us note that these latter choices for the parameters of the ev-knn classifier
may not be the most optimal, i.e., the ones leading to the best possible performances
with respect to the experiment described in this section; in particular, an approach has
been proposed in [41] to optimize these parameters. Similarly, ev-knn may not be the
(evidential) classifier, with the best possible performances on this experiment. The idea
in this section is not to show that correction mechanisms yield the best possible classifier
on a given classification problem. Rather, the aim is to illustrate the fact that given a
real-life situation where one has access to an information source, such as a sensor, which
can not really be controlled (i.e., is like a black box) and which is not necessarily the
best possible sensor out there, it may be possible to improve this source using correction
mechanisms. Hence, the role played by ev-knn in our experiment is simply to simulate
such a source.

The 5000 instances displayed in Figure 4, have been divided into three parts:

1. The first third of the data constitutes the training set of ev-knn, i.e., the set used
to learn the parameters γx for each class x ∈ X , as well as the set of neighbours
used to classify samples;

2. The second third of the data constitutes the training set for the correction mech-
anisms, i.e., it is dedicated to learn the best CD, CR and CN of ev-knn outputs;

3. The last third of the data constitutes the test set, i.e., it is used to test these learnt
corrections of ev-knn, as well as ev-knn.

The performances of ev-knn without correction (ev-knn), ev-knn with CD (CD), ev-
knn with CR (CR), and ev-knn with CN (CN), are reported in Figure 5 using ROC curves
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(a higher curve corresponds to higher performance); the ROC curves were obtained using
the plausibility transformation.

As may be expected, samples of classes x2 and x3, which are clearly disjoint from the
samples of the other classes (cf Figure 4), are very well classified by ev-knn (cf Figures 5b
and 5c). Besides, CD, CR and CN neither improve nor deteriorate ev-knn outputs for
these classes.

Samples of classes x1, x4 and x5, overlap (cf Figure 4) and are not so well classified
by ev-knn (cf Figures 5a, 5d and 5e). Most interestingly, CD, CR and CN succeed
in improving ev-knn outputs for these more difficult classes, which is an experimental
evidence of the interest of these correction mechanisms to improve the performance of
a source.

9 Conclusion

The aim of this study was twofold: (1) to enlarge the set of tools available to deal with
contextual knowledge about the quality of a source, and (2) to provide a practical means
to obtain such kind of knowledge.

Several conclusions may be drawn from our works and with respect to this aim.
First, it is indeed possible to find useful complements to contextual discounting based

on a coarsening and its recent extension to an arbitrary set of contexts: as illustrated
through numerous examples, CD, CR, CN, CdD, CdR, CD+ and CR+ may be used to
account for various situations with respect to meta-knowledge about a source, and some
of them have even been shown to be also interesting to improve a source performance.

The pitfall is that these contextual correction mechanisms correspond to quite spe-
cific meta-knowledge about a source, and accordingly to rather precise and different
interpretations of a given piece of information provided by the source, and thus one
must be careful in choosing one or the other mechanism and in setting its associated
parameters A and β.

When not much is known about the quality of a source, this variety and associated
difficulty may seem daunting. Fortunately, if labelled data are available, we have shown
that it is possible to learn which mechanism is the best (in terms of performance), and its
associated parameters. In this case, the subtlety resides in using an error criterion that
is meaningful, that leads itself to easy analysis and that also leads to an optimization
problem, which can be solved efficiently.

This study may be continued in various directions, which are left for further research.
In [28], it was envisioned to derive a contextual version of negating by considering a

situation where the agent holds beliefs concerning the truthfulness of the source condi-
tionally on different subsets of X , much as contextual discounting based on a coarsening
was originally derived in [23] and is extended to an arbitrary set of subsets in [21]. It
would be interesting to study this alternative path to derive a contextual version of
negating and to compare the resulting correction mechanism to CN.

Compared to CD and CR, some formal results remain to be obtained for CN. In
particular, since the inverse of the rule ∩©, and precisely the 0-commonality function,
is at the base of what would be contextual de-negating and thus of contextual negating
based on the canonical decomposition, it would be interesting to study further this
function in order to know under which conditions it does not equal to 0, similarly as we
know that commonality q(A) 6= 0 for all A ⊆ X if the mass function is non dogmatic.
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(a) Positive class: class x1. (b) Positive class: class x2.

(c) Positive class: class x3. (d) Positive class: class x4.

(e) Positive class: class x5.

Figure 5: ROC curves for each of the 5 classes.
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The conjunctive and equivalence rules, which are at the base of CR and CN re-
spectively, are actually two extreme members of a family of rules known as the α-
conjunctions [35, 25] depending on a parameter α ∈ [0, 1]. Hence, formally, CR and CN
may easily be presented as two members of a family of contextual correction mechanisms
based on the α-conjunctions. While it might be possible to find an interpretation for
all the members in this family, their main interest might reside in applications, where
they could be used as flexible tools to improve a source. This would require extending
to this family of correction mechanisms, the efficient means proposed in this paper to
learn CR and CN.

Concerning the learning of contextual correction parameters, other discrepancy mea-
sures (in particular distances [15, 18]) than the one based on the plausibility function
may be studied. Other approaches for obtaining these parameters may also be inves-
tigated, such as expert elicitation procedures (see, e.g., [29] for an expert elicitation
procedure of the knowledge associated with discounting) or methods using confusion
matrices, which may be appropriate for discovering truthfulness [17]. Finally, these ap-
proaches should also be looked at to obtain the parameters associated with the extension
of contextual discounting based on a coarsening uncovered recently in [21].
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A A general model of source truthfulness

In this appendix, a general model of source truthfulness is presented. It includes as
particular cases the three states `A, pA, and nA introduced in Sections 3 and 4.

A.1 Elementary-level truthfulness

Assume that a source S provides a piece of information on the value taken by x of the
form x ∈ B, for some B ⊆ X .

Let us now consider a particular value x ∈ X . In Sections 3.1 and 4.1, the notions
of (non) truthful, positively (non) truthful and negatively (non) truthful for a value
x ∈ X have been defined (Definitions 1, 3 and 4, respectively). Let us denote by tx a
variable with associated frame Tx = {tx,¬tx,¬tpx,¬tnx} allowing us to model the global
truthfulness of the source with respect to the value x, where:

• tx corresponds to the case where the source tells the truth whatever it says about
the value x, i.e., to a (positively and negatively) truthful source for x;

• ¬tx corresponds to the case where the source lies whatever it says about the value
x, i.e., to a (positively and negatively) non truthful source for x;

• ¬tpx corresponds to the case of a source that lies only when it says that x is a
possibility for x, i.e., to a positively non truthful and negatively truthful source
for x;
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• ¬tnx corresponds to the case of a source that lies only when it tells that x is not
a possibility for x, i.e., to a positively truthful and negatively non truthful source
for x.

Thus, there are four possible cases:

1. Suppose the source tells x is possibly the actual value of x, i.e., the information
x ∈ B provided by the source is such that x ∈ B.

(a) If the source is assumed to be in state tx or ¬tnx, then one must conclude that
x is possibly the actual value of x;

(b) If the source is assumed to be in state ¬tpx or ¬tx, then one must conclude
that x is not a possibility for the actual value of x;

2. Suppose the source tells x is not a possibility for the actual value of x, i.e., x 6∈ B.

(a) If the source is assumed to be in state tx or ¬tpx, then one must conclude that
x is not a possibility for the actual value of x;

(b) If the source is assumed to be in state ¬tnx or ¬tx, then one must conclude
that x is possibly the actual value of x;

A.2 Two truthfulness assumptions

Let T denote the possible states of S with respect to its truthfulness for all x ∈ X. By
definition, T = ×x∈XTx.

Let ht1,t2A ∈ T , A ⊆ X , denote the state where the source is in state t1 ∈ Tx for
all x ∈ A, and in state t2 ∈ Tx for all x 6∈ A. For instance, let X = {x1, x2, x3, x4},
A = {x3, x4}, t1 = tx and t2 = ¬tpx, then

ht1,t2A = htx,¬t
p
x

{x3,x4} =
(
¬tpx1 ,¬t

p
x2 , tx3 , tx4

)
,

i.e., the source is truthful for x3 and x4, and is positively non truthful and negatively
truthful for x1 and x2.

Consider now the following question: what must one conclude about x when the
source tells x ∈ B and is assumed to be in some state ht1,t2A ? To answer this question,
one merely needs to look in turn at each x ∈ X and:

1. to find for each of those x ∈ X , whether x 6∈ B or x ∈ B;

2. to find for each of those x ∈ X , whether x 6∈ A or x ∈ A, and, accordingly, which
of t1 or t2 applies for each of those x ∈ X ;

3. and then, using information obtained at steps 1 and 2, to find out for each of those
x ∈ X , which one of the four cases 1.a), 1.b), 2.a) or 2.b) described at the very
end of Section A.1 applies.

Table 7 lists exhaustively, i.e., for all possible cases with respect to the membership of
a given value x to the sets B and A, and for all possible couples (t1, t2), whether one
should deduce that a given value x ∈ X is possibly the actual value of x or not – the
former is indicated by a 1 and the latter by a 0 in columns (t1, t2). According to Table
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Table 7: Interpretations of the source testimony according to couples (t1, t2).

x ∈ B x ∈ A ¬tpx,¬tpx tx,¬tpx ¬tpx, tx tx, tx ¬tx,¬tpx ¬tnx,¬t
p
x ¬tx, tx ¬tnx, tx ¬t

p
x,¬tx tx,¬tx ¬tpx,¬tnx tx,¬tnx ¬tx,¬tx ¬tnx,¬tx ¬tx,¬tnx ¬tnx,¬tnx

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

7, when the source is assumed to be in, e.g., state htx,¬t
p
x

A , then one should deduce that
x ∈ X is a possible value for x iff x ∈ B and x ∈ A, and therefore, since this holds
for all x ∈ X , one should deduce that x ∈ B ∩ A. We may then remark that state

htx,¬t
p
x

A is actually nothing but state pA discussed in Section 4.2. Similarly, state h
¬tnx ,tx
A

corresponds to state nA of Section 4.3, and state htx,¬txA correspond to state `A of Section
3.2.

In addition, let us remark that states `A, pA, nA, induce that a testimony x ∈ B
should be combined with subset A using operators ∩, ∩, ∪, respectively. This comes
from the fact that these states are associated respectively to logical equality, conjunc-
tion, and disjunction, as can be seen from Table 7. More generally, this latter table
shows that the couples (t1, t2) ∈ T 2

x actually yield all possible binary Boolean connec-
tives; a formally interesting result pertaining to information correction which has some
similarity with what was done recently in information fusion in [28] and in [27], where
the conjunctive rule and the notion of conflict, respectively, are extended to other binary
Boolean connectives than the conjunction.

Remark 17. In this paper, we are only interested by the states based on the couples
(t1, t2) ∈ {(tx,¬tpx), (¬tnx, tx), (tx,¬tx)} since they are the only ones needed for our devel-
opments. Yet, let us note that the other couples may be useful. For instance, the state

h
¬tnx ,¬t

p
x

xi , which is such that ΓB(h
¬tnx ,¬t

p
x

xi ) = xi, for all B ⊆ X , allows one to recover the
correction mechanism used in [1] to favor a given element xi ∈ X .

B Single correction perspective

Interestingly, the BBCs corresponding to simple contextual biases put forward by Propo-
sition 7, are equivalent to a single BBC corresponding to some particular knowledge on
the truthfulness of the information source as shown by Proposition 17.

Proposition 17.

(◦A∈A fmH
A,∪

)(mS) = fmH
A,∪

(mS), (56)

with mHA,∪ = ∪©A∈Am
H
A,∪.

Proof. Let us first consider the left side of Equation (56). From Proposition 7, we have

(◦A∈A fmH
A,∪

)(mS) = mS ∪©A∈AAβA . (57)

From the definition of ∪©, we have that Equation (57) allocates, for all C ⊆ A and all
B ⊆ X , the quantity

mS(B) ·
∏
A∈C

(1− βA) ·
∏

D∈A\C

βD
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to B∪(∪A∈CA) ⊆ X , and a null mass to all D ⊆ X , D 6= B∪(∪A∈CA),∀C ⊆ A, ∀B ⊆ X .
Let us now consider the right side of Equation (56). Let HA,n = {nA, A ∈ A}.

The mass function mHA,∪ clearly has 2|HA,n| focal sets, which are HA,n and the sets
{t ∪ {nA, A ∈ C}}, for all C ⊂ A. Besides, from the definition of ∪©, the mass function
mHA,∪ is such that

mHA,∪ (HA,n) =
∏
A∈A

(1− βA),

mHA,∪ ({t ∪ {nA, A ∈ C}}) =
∏
A∈C

(1− βA) ·
∏

D∈A\C

βD, ∀C ⊂ A.

Furthermore, from the definition of the BBC procedure, we have that fmH
A,∪

(mS) allo-

cates,

• for all C ⊂ A and all B ⊆ X , the quantity

mS(B) ·
∏
A∈C

(1− βA) ·
∏

D∈A\C

βD

to

ΓB({t ∪ {nA, A ∈ C}}) = ΓB(t) ∪ (∪A∈CΓB(nA))

= B ∪ (∪A∈C(B ∪A))

= B ∪ (∪A∈CA)

• and for C = A and all B ⊆ X , the quantity

mS(B) ·
∏
A∈A

(1− βA) = mS(B) ·
∏
A∈C

(1− βA) ·
∏

D∈A\C

βD

to

ΓB(HA,n) = ΓB({nA, A ∈ C})
= ∪A∈CΓB(nA)

= ∪A∈C(B ∪A)

= B ∪ (∪A∈CA),

which completes the proof.

In other words, CD can also be viewed as a single correction under meta-knowledge
mHA,∪ obtained by combining disjunctively the pieces of meta-knowledge mHA,∪, A ∈ A.

A similar proposition (Proposition 18) to Proposition 17 exists for CR (although
it is not its strict counterpart). It relies on the following technical lemma, which puts
forward a particular subset of H, denoted by PA, that induces the same transformation
to a testimony x ∈ B as contextual lie pA.
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Lemma 1.
ΓB(pA) = ΓB(PA), ∀A ⊆ X , ∀B ⊆ X ,

with PA defined by PA = {px|x ∈ A} ∪ p∅.

Proof. We have

ΓB(PA) = ΓB(p∅)
⋃
x∈A

ΓB(px) = (B ∩ ∅)
⋃
x∈A

(B ∩ x)

= (B ∩ ∅)
⋃
x∈A

(B ∩ x) =
⋃
x∈A

(B ∩ x)

= B ∩ (
⋃
x∈A

x) = B ∩A = ΓB(pA).

Proposition 18.

mS ∩©A∈AA
βA = fmH

A,∩
(mS) (58)

with mHA,∩ = ∩©A∈Am
H
A,P,∩, where

mHA,P,∩(PX ) = βA, mHA,P,∩(PA) = 1− βA,

and PA = {px|x ∈ A} ∪ p∅, for all A ⊆ X .

Proof. First, let us study the left side of (58). From the definition of ∩©, we have that,
for all B ⊆ X , the quantity mS(B) · ( ∩©A∈AA

βA)(C), with C a focal set of ∩©A∈AA
βA ,

is allocated to set B ∩ C.
Moreover, from the definitions of AβA and mHA,P,∩, it is straightforward to see that

( ∩©A∈AA
βA)(C) = ( ∩©A∈Am

H
A,P,∩)(PC)

holds for any focal set C of ∩©A∈AA
βA .

Studying now the right side of (58). From the definition of the BBC procedure and
of mHA,∩, the quantity

mS(B) · ( ∩©A∈Am
H
A,P,∩)(PC) = mS(B) · ( ∩©A∈AA

βA)(C)

is allocated to set ΓB(PC) = ΓB(pC) (using Lemma 1) which is in turn equal to B ∩C.

In other words, CR can be viewed as a single correction under meta-knowledge mHA,∩
obtained by combining conjunctively the pieces of meta-knowledge mHA,P,∩, each of them

inducing the same correction as the pieces of meta-knowledge mHA,∩ (24) underlying

CR10.

10This statement holds because ΓB(PX) = ΓB(pX) (using Lemma 1), and state pX corresponds to
state t (Remark 3).
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C Proof of Proposition 15

A proof for Proposition 15 is provided in Appendix C.2. It uses the matrix notation
for belief functions and in particular some technical results using this notation and
concerning rule ∩©, which are first recalled in Appendix C.1.

C.1 Matrix notation

Matrix calculus can be applied to belief functions in order to simplify their mathemat-
ics [37]. A MF m (and its associated functions, e.g., q) can be seen as a column vector
of size 2|X |, whose elements are ordered according to the so-called binary order: the
ith element of the vector m corresponds to the set with elements indicated by 1 in the
binary representation of i− 1. For instance, let X = {x1, x2, x3, x4}. The first element
(i = 1) of the vector m corresponds to ∅ since the binary representation of 1−1 is 0000.
The twelfth element (i = 12) corresponds to {x1, x2, x4} since the binary representation
of 12− 1 is 1011.

Let us denote by Kron(A,B) the mp × nq matrix resulting from the Kronecker
product of a m×n matrix A with a p× q matrix B. The matrix Kron(A,B) is defined
by:

Kron(A,B) =

A(1, 1)B · · · A(1, n)B
...

. . .
...

A(m, 1)B · · · A(m,n)B

 .
The transformation of a MF m into its associated commonality function q admits a

simple expression using matrix notation. We have:

q = Q ·m,

with Q a matrix that can be obtained in a simple way using Kronecker multiplication,

from the building block

[
1 1
0 1

]
:

Qi+1 = Kron

([
1 1
0 1

]
, Qi

)
,Q1 = 1,

where Qi+1 denotes the matrix Q when |X | = i. On the other hand, m can be recovered
from q as follows:

m = Q−1 · q.

As mentioned in Section 2.1.2, combination by the rule ∩© can be expressed similarly
as combination by ∩© and ∪©, that is by a simple pointwise product expression, as shown
by Smets [35, 37]. The counterpart of the commonality and implicability functions on
which the pointwise product expression of ∩© is based, is called 0-commonality in [26, 24].
Let q denote the 0-commonality function associated to a MF m. We have, for any two
MFs m1 and m2 [35, 37]:

q
1 ∩©2

(A) = q
1
(A) · q

2
(A), ∀A ⊆ X .
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Smets [35, 37] showed that function q can be obtained as follows:

q = Q ·m,

with Q a matrix, which as shown by Pichon and Denœux [26, 24] can easily be obtained

by Kronecker multiplication, similarly as Q, but using building block

[
1 1
−1 1

]
.

In the sequel, we will also denote by B the matrix obtained by Kronecker multi-

plication, similarly as Q, but using building block

[
1 −1
1 1

]
. This matrix plays only a

technical role in the proof that follows.

C.2 Plausibility on singletons after CN

The proof of Proposition 15 requires the following technical Lemmas 2, 3, 4, 5 and 6.

Lemma 2.

Q(B,A) = (−1)|A∩B|, ∀A,B ⊆ X . (59)

Proof. From [37, page 26 (Q corresponding to G with α = 0)], column A of matrix Q
is VA · 1 (1 denotes the column vector which components are 1), with VA a matrix
defined by VA =

∏
x 6∈A Vx, where Vx = [Vx(A,B)], ∀x ∈ X , ∀A,B ⊆ X , with:

Vx(A,B) =


1 if x 6∈ A, A = B,
−1 if x ∈ A, A = B,
0 if A 6= B.

(60)

Matrices Vx are diagonal, hence we have for all A,B ⊆ X :

Q(B,A) = (VA · 1)(B) = VA(B,B) =
∏
x 6∈A

Vx(B,B)

=

 ∏
x 6∈A,x∈B

Vx(B,B)

 ·
 ∏
x 6∈A,x 6∈B

Vx(B,B)


=

∏
x 6∈A,x∈B

Vx(B,B) =
∏

x∈A∩B

Vx(B,B) = (−1)|A∩B|.

Lemma 3. For all A ⊂ X , the 0-commonality function q
A

associated to the simple MF

AβA, βA ∈ [0, 1], is defined for all B ⊆ X by:

q
A

(B) =

{
1 if

∣∣A ∩B∣∣ is even,
2 · βA − 1 otherwise.

(61)

Proof.

q
A

(B) =
∑
C⊆X

Q(B,C) · (AβA)(C) = Q(B,A) · (1− βA) +Q(B,X ) · βA.

= (−1)|A∩B| · (1− βA) + βA. (Using Lemma 2)
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Lemma 4.

Q−1 = 0.5|X | ·B. (62)

Proof. From [24, Corollary 6.1], Q−1 may be obtained by Kronecker multiplication using

the building block 0.5 ·
[
1 −1
1 1

]
. The lemma follows from property Kron(k ·A,B) =

Kron(A, k · B) = k ·Kron(A,B), k scalar, of Kronecker multiplication and the fact

that

[
1 −1
1 1

]
is the building block of B.

Lemma 5.

B(B,A) = (−1)|A∩B|, ∀A,B ⊆ X . (63)

Proof. Using [24, Proposition 6.7], we have Q = J ·B · J with J the square matrix, the
elements of which are zeros except those on the secondary diagonal which are ones [37].
Placed before a matrix M, matrix J inverses the rows of M, which implies that (J ·
M)(B,A) = M(B,A), ∀A,B ⊆ X . Placed after a matrix M, J inverses the columns of
M which yields to (M · J)(B,A) = M(B,A), ∀A,B ⊆ X . Thus: Q(B,A) = B(B,A),
∀A,B ⊆ X , which, using Lemma 2, gives (63).

Lemma 6. For all x ∈ X , for all C ⊆ X such that C 6= ∅ and C 6= {x}:∑
B⊆{x}

(−1)|C∩B| = 0. (64)

Proof. Let x ∈ X , X ? = X \ {x} = {x} and C? = C \ {x}, ∀C ⊆ X . We have
B ∩ C = B ∩ C? ⊆ X ?, ∀C ⊆ X , ∀B ⊆ X ?. Thus, ∀C ⊆ X s.t. C 6= ∅ and C 6=
{x},

∑
B⊆{x}(−1)|C∩B| is equal to

∑
B⊆X ?(−1)|C

?∩B| with C? ⊆ X ? and C? 6= ∅. Let

m = |C?|, n = |C?|, Peven = {B ⊆ X ?, |C? ∩ B| is even}, Podd = {B ⊆ X ?, |C? ∩
B| is odd}. Let us recall that there are

(
m
k

)
2n subsets of X ? with k elements in C?.

We then have:
∑

B⊆X ?(−1)|C
?∩B| = |Peven| − |Podd| =

∑
k even

(
m
k

)
2n −

∑
k odd

(
m
k

)
2n =

2n
∑m

k=0

(
m
k

)
(−1)k = 0 (Binomial theorem).

Proposition 15 can then be proved as follows.

Proof. Let pl and q be, respectively, the plausibility and 0-commonality functions asso-

ciated to MF m defined by m = mS ∩©A∈AA
βA with βA ∈ [0, 1], for all A ∈ A.
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For all x ∈ X , we then have:

pl({x}) =
∑

A∩{x}6=∅

m(A) =
∑
x∈A

(Q−1 · q)(A) =
∑
x∈A

(0.5|X | ·B · q)(A) (Using Lemma 4)

= 0.5|X | ·
∑
x∈A

(B · q)(A) = 0.5|X | ·
∑
x∈A

∑
C

B(A,C) · q(C)

= 0.5|X | ·
∑
C

q(C)
∑
x∈A

B(A,C) = 0.5|X | ·
∑
C

q(C)
∑
x∈A

(−1)|C∩A| (Using Lemma 5)

= 0.5|X | ·
∑
C

q(C)
∑
B⊆{x}

(−1)|C∩B|

= 0.5|X | ·

q(∅) ∑
B⊆{x}

(−1)|∅∩B| + q({x})
∑
B⊆{x}

(−1)|{x}∩B| +
∑

C 6=∅,{x}

q(C)
∑
B⊆{x}

(−1)|C∩B|

 .

Since there are 2|X |−1 subsets of {x}, this last equation becomes:

0.5|X | ·

2|X |−1 · q(∅) + 2|X |−1 · q({x}) +
∑

C 6=∅,{x}

q(C)
∑
B⊆{x}

(−1)|C∩B|


= 0.5 · q(∅) + 0.5 · q({x}) + 0.5|X | ·

∑
C 6=∅,{x}

q(C)
∑
B⊆{x}

(−1)|C∩B|. (65)

Using [24, Proposition 6.5], which tells us that q(∅) = 1, and Lemma 6, Equation (65)
reduces to:

pl({x}) = 0.5 + 0.5 · q({x}).

Besides, using Lemma 3 and the definition of q:

q(B) = q
S

(B) ·
∏

A∈A,|A∩B| is odd

(2 · βA − 1), for all B ⊆ X .

Thus, for all x ∈ X :

q({x}) = q
S

({x}) ·
∏

A∈A,|A∩{x}| is odd

(2 · βA − 1) = q
S

({x}) ·
∏

A∈A,A⊆{x}

(2 · βA − 1).

At last:

q
S

({x}) = (Q ·mS)({x}) =
∑
A⊆X

Q(x,A) ·mS(A)

=
∑

A∩{x}6=∅

Q(x,A) ·mS(A) +
∑
A⊆{x}

Q(x,A) ·mS(A)

=
∑

A∩{x}6=∅

(−1)|A∩{x}| ·mS(A) +
∑
A⊆{x}

(−1)|A∩{x}| ·mS(A) (Using Lemma 2)

=
∑

A∩{x}6=∅

mS(A)−
∑
A⊆{x}

mS(A)

= plS({x})− bS({x})
= 2 · plS({x})− 1,
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which completes the proof.
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[17] E. Lefèvre, F. Pichon, D. Mercier, Z. Elouedi, and B. Quost. Estimation de sincérité
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[18] M. Loudahi, J. Klein, J.-M. Vannobel, and O. Colot. New distances between bodies
of evidence based on dempsterian specialization matrices and their consistency with
the conjunctive combination rule. International Journal of Approximate Reasoning,
55(5):1093 – 1112, 2014.

[19] D. Mercier, G. Cron, T. Denœux, and M.-H. Masson. Decision fusion for postal
address recognition using belief functions. Expert Systems with Applications,
36(3):5643–5653, 2009.
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