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Abstract. Blurring faces on images may be required for anonymity rea-
sons. This may be achieved using face detectors that return boxes po-
tentially containing faces. The most direct way to exploit these detectors
is to combine them in order to obtain a more efficient face detection
system, producing more accurate boxes. However, contrary to detection,
blurring is actually a decision problem situated rather at the pixel level
than the box level. Accordingly, we propose in this paper a face blurring
system based on face detectors, which operates at the pixel-level. First,
for each pixel, detector outputs are converted into a common representa-
tion known as belief function using a calibration procedure. Then, cali-
brated outputs are combined using Dempster’s rule. This pixel-based ap-
proach does not have some shortcomings of a state-of-the-art box-based
approach, and shows better performances on a classical face dataset.

Keywords: Belief functions, Information fusion, Image processing, Ev-
idential calibration, Face blurring.

1 Introduction

Blurring faces on images may be required for anonymity reasons. Due to the
generally large amount of images to process but also the necessity for good
performances (in particular, avoiding missed faces), one must resort to semi-
automatic blurring systems – typically, a human operator correcting the outputs
of an automatic face detection system.

Face detection can be performed using single detectors [6, 10], yet since de-
tectors are generally complementary, i.e., they do not detect only the same faces,
using multiple detectors is a means to improve overall performance. Within this
scope, Faux [3] proposed a face detection system, which consists in combining
outputs of the face detector proposed in [10] and a skin colour detector. This step
of combination is conducted within a framework for reasoning under uncertainty
called evidence theory [8, 9]. However, it does not use all available information.
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Indeed, for a given image, face detectors such as [10] provide a set of bounding
boxes corresponding to the assumed positions of the faces, but they provide as
well for each of these boxes a confidence score.

In the context of pedestrian detection, Xu et al. [11] recently proposed an
evidential approach, which uses these confidence scores. Specifically, multiple
detectors are used in Xu et al. [11], and to be able to combine them, the scores
they produce are transposed into a common representation; this latter procedure
is called calibration [7]. Of particular interest is that Xu et al. [12] subsequently
refined this calibration procedure, in order to account explicitly for uncertainties
inherent to such process.

Now, although face blurring may be achieved using simply the bounding
boxes outputted by a face detection system, we may remark that it is not exactly
the same problem as face detection. Indeed, face blurring amounts merely to
deciding whether a given pixel belongs to a face, whereas face detection amounts
to determining whether a given set of pixels corresponds to the same face. In
other words, the richer box-based information provided by detection systems is
not strictly necessary for blurring. This remark opens the path for a different
approach to reasoning about blurring, which may then be situated at the pixel-
level rather than box-level. In particular, face detectors may still be used but
their outputs need not be combined so as to produce boxes as is the case in face
detection.

Accordingly, we propose in this paper a face blurring system based on face
detectors, which operates at the pixel-level. First, for each pixel, detector out-
puts are calibrated using Xu et al. procedure [12]. Then, calibrated outputs are
combined using Dempster’s rule [8]. We may already remark that this approach
does not have some shortcomings of box-based methods, as will be shown later.

This paper is organized as follows. First, Section 2 recalls necessary back-
ground on evidence theory and calibration. Then, Section 3 exposes what may
be considered presently as one of the best available blurring system based on
multiple detectors, that is, an evidential system relying on face detection per-
formed using Xu et al. detection approach [11], applied to faces rather than
pedestrians and improved using Xu et al. calibration [12]. Our proposed pixel-
based system is then detailed in Section 4. An experiment comparing these two
approaches is reported in Section 5, before concluding in Section 6.

2 Evidence theory and calibration: necessary background

2.1 Evidence theory

The theory of evidence is a framework for reasoning under uncertainty. Let Ω
be a finite set called the frame of discernment, which contains all the possible
answers to a given question of interest Q. In this theory, uncertainty with respect
to the answer to Q is represented using a Mass Function (MF) defined as a
mapping mΩ : 2Ω → [0, 1] that satisfies

∑
A⊆Ωm

Ω (A) = 1 and mΩ(∅) = 0. The

quantity mΩ(A) corresponds to the share of belief that supports the claim that
the answer is contained in A ⊆ Ω and nothing more specific.
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Given two independent MFs mΩ
1 and mΩ

2 about the answer to Q, it is pos-
sible to combine them using Dempster’s rule of combination. The result of this
combination is a MF mΩ

1⊕2 defined by

mΩ
1⊕2(A) =

1

1− κ
∑

B∩C=A

mΩ
1 (B)mΩ

2 (C), (1)

for all A ⊆ Ω, where κ =
∑
B∩C=∅m

Ω
1 (B)mΩ

2 (C).
Different decision strategies exist to make a decision about the true answer

to Q, given a MF mΩ on this answer [1]. In particular, the answer having the
smallest so-called upper expected cost may be selected. The upper expected cost
R∗(ω) of some answer ω ∈ Ω is defined as

R∗(ω) =
∑
A⊆Ω

mΩ(A) max
ω′∈A

c(ω, ω′), (2)

where c(ω, ω′) is the cost of deciding ω when the true answer is ω′.

2.2 Evidential calibration of binary classifiers

A binary classifier, e.g., a detector, may return a score associated to its classifi-
cation decision, which is a valuable information because it provides an indication
on how confident the classifier is. The range of these scores differs depending on
the features and the type of the classification algorithm used. Thus, transposing
scores in a common representation is essential in a context of multi-detectors.

This step, called calibration of a classifier, relies on a training set Lcal =
{(S1, Y1), ..., (Sn, Yn)}, with Si the score provided by the classifier for the ith

sample and Yi ∈ Ω = {0, 1} its associated true label. Given a new score S,
the purpose of calibration is to estimate the posterior probability distribution
pΩS = pΩ(·|S) using Lcal.

Yet, certain score values may be less present than others in Lcal, thus some
estimated probabilities may be less accurate than others. To address this issue,
Xu et al. [12] proposed several evidential extensions of probabilistic calibration
methods. Accordingly, given a new score S, any of Xu et al. [12] evidential
calibration procedures yields a MF mΩ

S (rather than a probability distribution
pΩS ) accounting explicitly for uncertainties in the calibration process.

Among the evidential calibration procedures studied in [12], the likelihood-
based logistic regression presents overall better performances than other calibra-
tions. Thus, this will be the calibration used in this paper1.

3 An evidential box-based face detection approach

Face blurring may be achieved using simply the boxes outputted by a face detec-
tion system. In this section, we present such a system, which may be considered

1 Due to lack of space, we must refrain from recalling the definition of mΩ
S obtained

under this calibration. We refer the interested reader to [12].
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as state-of-the-art with respect to face detection. In a nutshell, it is merely
Xu et al. [11] evidential box-based detection approach applied to faces rather
than pedestrians and whose calibration step has been replaced by the evidential
likelihood-based logistic regression calibration procedure proposed in [12].

3.1 Xu et al. [11] box-based detection approach applied to faces

Let us consider a given image and assume that J face detectors are run on this
image. Formally, each detector Dj , j = 1, ..., J , provides Nj couples (Bi,j , Si,j),
where Bi,j denotes the ith box, i = 1, ..., Nj , returned by the jth detector and
Si,j is the confidence score associated to this box.

Through a calibration procedure, which will be described in Section 3.2, score
Si,j is transformed into a MF mBi,j defined over the frame Bi,j = {0, 1}, where
1 (resp. 0) means that there is a face (resp. no face) in box Bi,j .

Then, using a clustering procedure detailed in Section 3.3, all the boxes Bi,j
returned by the J detectors for the considered image, are grouped into K clusters
Ck, k = 1, ...,K, each of these clusters being represented by a single box Bk.

In addition, for each box Bi,j ∈ Ck, its associated MF mBi,j is assumed to
represent a piece of evidence regarding the presence of a face in Bk, that is, mBi,j

is converted into a MF mBk
i,j on Bk = {0, 1} defined by mBk

i,j (A) = mBi,j (A), for
all A ⊆ {0, 1}. These pieces of evidence are then combined using Dempster’s rule;
this can be done as the sources are considered to be independent and reliable.
More complex combination schemes are also considered in [11]. However, only
Dempster’s rule, which besides presents good performance in [11], is considered
here. The combination results in a MF mBk representing the overall system
uncertainty with respect to the presence of a face in Bk.

3.2 Box-based score calibration for a detector

In order to transform the score Si,j associated to a box Bi,j into a MF mBi,j ,
detector Dj needs to be calibrated. In particular, the evidential likelihood-based
logistic regression calibration procedure [12] may be used instead of the cruder
procedures used in [11]. As recalled in Section 2.2, such procedures require a
training set, which we denote by Lcal,j . We recall below how Lcal,j is built.

Assume that L images are available. Besides, the positions of the faces really
present in each of these images are known in the form of bounding boxes. For-
mally, this means that for a given image `, a set of M ` boxes G`r, r = 1, ...,M `,
is available, with G`r the rth bounding (ground truth) box on image `.

Furthermore, detector Dj to be calibrated is run on each of these images,
yielding N `

j couples (B`t,j , S
`
t,j) for each image `, where B`t,j denotes the tth box,

t = 1, ..., N `
j , returned on image ` by detector Dj and S`t,j is the confidence score

associated to this box.

From these data, training set Lcal,j is defined as the set of couples (S`t,j , Y B
`
t,j),

` = 1, ..., L, and t = 1, ..., N `
j , with Y B`t,j ∈ {0, 1} the label obtained by evaluat-
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ing whether box B`t,j “matches” some face in image `, i.e.,

Y B`t,j =

{
1 if ∃G`r, r = 1, ...,M `, such that ov(G`r, B

`
t,j) ≥ λ,

0 otherwise,

where λ is some threshold in (0, 1) and ov(G`r, B
`
t,j) is a measure of the overlap

between boxes G`r and B`t,j [2]. It is defined by

ov(B1, B2) =
area(B1 ∩B2)

area(B1 ∪B2)
, (3)

for any two boxes B1 and B2. Informally, Lcal,j stores the scores associated to
all the boxes returned by detector Dj on images where the positions of faces are
known, and records for each score whether its associated box is a true or false
positive. The MF mBi,j associated to a new score Si,j and obtained from cali-
bration relying on Lcal,j represents thus uncertainty toward box Bi,j containing
a face.

3.3 Clustering of boxes

As several detectors are used, some boxes may be located in the same area of
an image, which means that different boxes assume that there is a face in this
particular area. The step of clustering allows one to group those boxes and to
retain only one per cluster. A greedy approach is used in [11]: the procedure starts
by selecting the box Bi,j with the highest mass of belief on the face hypothesis
and this box is considered as the representative of the first cluster. Then, for
each box Bu,v, ∀(u, v) 6= (i, j), such that the overlap ov(Bi,j , Bu,v) is above the
threshold λ, the box Bu,v is grouped into the same cluster as Bi,j , and is then
no longer considered. Among the remaining boxes, the box Bi,j with the highest
mBi,j ({1}) is selected as representative of the next cluster, and the procedure is
repeated until all the boxes are clustered.

4 Proposed approach

As explained in Section 1, for the purpose of blurring, it seems interesting to work
at the pixel level rather than box level. This section gives the full particulars of
our proposed pixel-based system.

4.1 Overview of the approach

To each pixel px,y in an image, we associate a frame of discernment Px,y = {0, 1},
where x and y are the coordinates of the pixel in the image and 1 (resp. 0) means
that there is a face (resp. no face) in pixel px,y.

The inputs of our approach are the same as for the box-based approach but
are treated differently. In particular, if pixel px,y belongs to a box Bi,j , the
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score Si,j associated to this box Bi,j is “transferred” to px,y and then using
the evidential likelihood-based logistic regression calibration procedure together
with a training set LcalP,j defined in Section 4.2, this score is transformed into a

MF m
Px,y

i,j . If pixel px,y does not belong to any of the boxes returned by detector

Dj , we take this into account via a MF denoted m
Px,y

∗,j and defined in Section 4.2.

Eventually, we then obtain for pixel px,y several MFs on Px,y, which we
combine by Dempster’s rule, resulting in a MF mPx,y representing the overall
system uncertainty with respect to the presence of a face in px,y.

This approach has in theory a high complexity. However, since we have

m
Px,y

∗,j (A) = m
Px′,y′

∗,j (A), for all A ⊆ {0, 1} and x′ 6= x or y′ 6= y, i.e., any
two pixels that do not belong to a box of Dj are associated MFs with the same
definitions, then pixels that do not belong to any of the returned boxes by the
detectors have the same resulting MF. Hence, since this latter case happen often
in practice, this allows us to have a common processing for a very large number
of pixels, which considerably reduces the complexity.

Let us finally remark that this approach presents several advantages over
the one of Section 3: first, as will be seen in Section 4.2, our calibration step
avoids the use of the parameter λ, whose value needs to be fixed either a priori
(but then it is arguably arbitrary) or empirically; second, our approach avoids
the use of clustering, which also involves the parameter λ and that may behave
non optimally in a multi-object situation, especially when they are close to each
other, which may be the case with faces.

4.2 Pixel-based score calibration for a detector

Let us describe the set LcalP,j underlying the transformation using calibration

of a score Si,j associated to a pixel px,y by a detector Dj , into a MF m
Px,y

i,j .

For a given image `, each couple (B`t,j , S
`
t,j) introduced in Section 3.2 yields,

via “transfer”,
∣∣B`t,j∣∣ couples (p`d,t,j , S

`
t,j), with d = 1, . . . ,

∣∣B`t,j∣∣, and
∣∣B`t,j∣∣ the

number of pixels in box B`t,j , and where p`d,t,j denotes the pixel in dth position

in box B`t,j .

From these data, we define LcalP,j as the set of couples (S`t,j , Y P
`
d,t,j), with

` = 1, . . . , L, t = 1, . . . , N `
j , and d = 1, . . . ,

∣∣B`t,j∣∣, with Y P `d,t,j ∈ {0, 1} the label

simply obtained by checking whether pixel p`d,t,j belongs to some ground truth

box G`r in the image `, i.e,

Y P `d,t,j =

{
1 if ∃ G`r, r = 1, . . . ,M `, such that p`d,t,j ∈ G`r,
0 otherwise.

LcalP,j may pose a complexity issue as |LcalP,j | =
∑L
`=1

∑N`
j

t=1

∣∣B`t,j∣∣. To avoid
this, one may use a smaller set L′calP,j ⊂ LcalP,j , which represents roughly the
same information as LcalP,j and built as follows: for each triple (`, t, j), only
10 couples among the couples (S`t,j , Y P

`
d,t,j), d = 1, . . . ,

∣∣B`t,j∣∣, are selected such
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that the ratio
|{Y P `

d,t,j |d=1,...,|B`
t,j|,Y P `

d,t,j=1}|
|{Y P `

d,t,j |d=1,...,|B`
t,j|,Y P `

d,t,j=0}| is preserved. L′calP,j has then a size

of
∣∣∣L′calP,j∣∣∣ = 10

∑L
`=1N

`
j .

Set LcalP,j is useful for pixels that have a score, i.e., are contained in a box.
A pixel px,y that does no belong to any box returned by a given detector Dj ,
does not have a score for this detector. Yet, it is reasonable to assume that Dj is
almost certain that this pixel does not belong to a face, which can be modelled

by a MF denoted m
Px,y

∗,j . A first possibility for m
Px,y

∗,j could be to simply choose
some MF representing this kind of knowledge, but this is not a very satisfying
solution. Moreover, it should be taken into account that detectors do not present
the exact same performances (e.g., some may have many more pixels not in boxes

than others). Within this scope, we propose a solution to obtain m
Px,y

∗,j . For each
detector Dj , its classification performance on pixels that do not belong to boxes
is estimated using L images, where the positions of the faces really present
are known. We denote by TN (True Negative) the number of pixels correctly
classified on these images as non-face and FN (False Negative) the number of

pixels classified as non-face but actually belonging to a face. m
Px,y

∗,j can then be

defined by m
Px,y

∗,j ({0}) = TN
TN+FN+1 ,m

Px,y

∗,j ({1}) = FN
TN+FN+1 ,m

Px,y

∗,j ({0, 1}) =
1

TN+FN+1 . This definition may be seen as an evidential binning calibration [12]
applied to pixels that do not belong to any of the boxes.

Our modeling of box absence is quite different from that of the box-based
method, and arguably more consistent. Indeed, in this latter method, for a given
area in an image, there are two different modelings of box absence for a detector
depending on the situation: either none of the detectors has provided a box, in
which case the area is considered as non face, which amounts to considering that
the detectors know that there is no face; or only a subset of the detectors has
provided a box, in which case the other detectors are ignored, which is equivalent
(under Dempster’s rule) to considering that these detectors know nothing.

5 Experiment

In this section, the results of the proposed approach on a literature dataset are
presented and compared to that of the box-based method presented in Section 3.

We selected three face detectors in the light of the availability of an open
source implementation. The first detector is the one proposed by Viola and
Jones [10], which is based on a classification algorithm called Adaboost and that
uses Haar feature extraction. The second detector is a variant of the previous
one: the same classification algorithm is used but with Local Binary Patterns
(LBP) feature extraction [4]. The third detector relies on Support Vector Ma-
chine (SVM) and uses Histogram of Oriented Gradients (HOG) features [6].

For our experiment, we used a literature database called Face Detection Data
Set and Benchmark (FDDB) [5]. It contains the annotations (ground truth) for
5171 faces in a set of 2845 images. In this paper, about 2000 images are used for
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the training of the detectors, and around 200 for calibration. Performance tests
are conducted over the last 600 images, containing 1062 ground truth faces.

As our purpose is to minimize the number of non-blurred face pixels, it is
worse to consider a face pixel as non-face than the opposite. In other words, using
the decision strategy relying on upper expected costs (Section 2.1), decisions
were taken for each test pixel with costs such that c(1, 0) <= c(0, 1). More
specifically, we fixed c(1, 0) = 1 and gradually increased c(0, 1) starting from
c(0, 1) = 1, to obtain different performance points. To quantify performances,
we used recall (proportion of pixels correctly blurred among the pixels to be
blurred) and precision (proportion of pixels correctly blurred among blurred
pixels).

(a) Versus detectors. (b) Versus box-based method.

Fig. 1: Pixel-based approach vs detectors (1a) and vs box-based approach (1b).

Figure (1a) compare the results of the three selected detectors taken alone
with our approach relying on a combination of their outputs. Comparison be-
tween the box-based approach used with different values of the overlap threshold
λ and our approach is shown in Figure (1b).

6 Conclusion

In this paper, a pixel-based face blurring system relying on evidential calibration
and fusion of several detector outputs was proposed. It brings several advantages
over a previous box-based proposal: avoidance of the overlap threshold, of a
clustering step, more consistent treatment of box absence, better performances.
Several improvements are envisioned such as adding a skin colour detector to
the system and refining the calibration and fusion steps. Some experiments are
also envisaged on a more challenging database, which presents difficulties such
as image quality or low light conditions.
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