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Abstract. This paper compares several assignment algorithms in a
multi-target tracking context, namely: the optimal Global Nearest Neigh-
bor algorithm (GNN) and a few based on belief functions. The robust-
ness of the algorithms are tested in different situations, such as: nearby
targets tracking, targets appearances management. It is shown that the
algorithms performances are sensitive to some design parameters. It is
shown that, for kinematic data based assignment problem, the credal
assignment algorithms do not outperform the standard GNN algorithm.

Keywords: multi-target tracking, optimal assignment, credal assign-
ment, appearance management.

1 Introduction

Multiple target tracking task consists of the estimation of some random targets
state vectors, which are generally composed of kinematic data (e.g. position,
velocity). Based on some measured data (e.g. position in x and y directions), the
state estimation can be ensured by: Kalman filters, particles filters, Interacting
Multiple Model algorithm which are used in this article and so on. Targets state
estimation quality depends on how accurately the measured data are assigned
to the tracked targets. In fact the assignment task is quite hard as far as the
measured data are imperfect.

This paper focuses on distance optimization based assignment, where, the
well known optimal Global Nearest Neighbor algorithm (GNN) [1] is compared
with some, recently developed, equivalent credal solutions, namely: the works of
Denoeux et al. [2], Mercier et al. [3], Fayad and Hamadeh [4] and Lauffenberger
et al. [5]. Discussions with some other approaches are included [6].

This paper highlights drawbacks of turning distances into mass functions,
in the credal algorithms. Simulation examples show the difficulties to correctly
define the parameters of all the methods, including the appearances and disap-
pearances management. In particular, it is shown that the performance criteria
is linked to two distinct errors, namely: miss-assignment of two nearby targets
and false decision about new targets. A method to define the most accurate
mass function, allowing the credal algorithms to get the same performance as
the GNN, is presented. It appears that in the described mono-sensor experiments
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based on kinematic data, credal assignment algorithms do not outperform the
standard GNN algorithm.

In this paper, the problem of conflicting assignment situation and the pro-
posed solutions are described in Section 2. A relation between the algorithms
parameters is presented in Section 3. Some tests and results in tracking assign-
ment context are depicted in Section 4. Section 5 concludes the paper.

2 Assignment Problem and Related Solutions

In multi target tracking contexts, updating the state estimations is much more
complex than in a mono target framework. Indeed the first task is to assign the
observations to the known objets.

Let us illustrate the problem in Fig. 1, where at a given time k, three targets
T = {T1, T2, T3} are known and four observations O = {O1, O2, O3, O4} are
received. The question is: how to assign the observations to the known targets
and taking into account the appearances and disappearances?

Fig. 1. Distance based assignment

Global Nearest Neighbor (GNN) solution: GNN algorithm is one of the firstly
proposed solutions to the assignment problem in multi-target tracking context. It
provides an optimal solution, in the sense where global distance between known
targets and observations is minimized. Let ri,j ∈ {0, 1} be the relation that
object Ti is associated or not associated with observation Oj (ri,j = 1 means
that observation Oj is assigned to object Ti, ri,j = 0 otherwise). The objective
function of such problem is formalized as follows:

min

n∑

i=1

m∑

j=1

di,jri,j , (1)

where,
n∑

i=1

ri,j = 1 , (2)

m∑

j=1

ri,j ≤ 1 , (3)
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where di,j represents the Mahalanobis distance between the known target Ti and
the observation Oj .

The generalized distances matrix [di,j ] for the example given in Fig. 1, can
have the following form:

O1 O2 O3 O4

T1 d1,1 d1,2 d1,3 d1,4
T2 d2,1 d2,2 d2,3 d2,4
T3 d3,1 d3,2 d3,3 d3,4
NT1 λ ∞ ∞ ∞
NT2 ∞ λ ∞ ∞
NT3 ∞ ∞ λ ∞
NT4 ∞ ∞ ∞ λ

When they are not assigned to existing targets, observations initiate new targets
noted NT . If the probability p that an observation is generated by an existing
target is known, the threshold λ can be derived from the χ2 table as far as the
Mahalanobis1 distance follows a χ2 distribution [7]:

P (di,j < λ) = p, (4)

otherwise, it must be trained to lower the false decisions rate.

2.1 Denoeux et al.’s Solution [8]

In Denœux et al.’s approach as in most credal approaches, available evidence on
the relation between objects Ti and Oj is assumed to be given for each couple
(Ti, Oj) by a mass function mi,j expressed on the frame {0, 1} and calculated in
the following manner:

⎧
⎨

⎩

mi,j({1}) = αi,j , supporting ri,j = 1.
mi,j({0}) = βi,j , supporting ri,j = 0.
mi,j({0, 1}) = 1− αi,j − βi,j , ignorance on the assignment of Oj to Ti.

(5)
With R the set of all possible relations between objects Ti and Oj , Ri,j denotes
the set of relations matching object Ti with observation Oj :

Ri,j = {r ∈ R|ri,j = 1}. (6)

Each mass function mi,j is then extended to R by transferring masses mi,j({1})
to Ri,j , mi,j({0}) to Ri,j and mi,j({0, 1}) to R. For all r ∈ R, associated plau-
sibility function Pli,j verifies:

Pli,j({r}) = (1− βi,j)
ri,j (1− αi,j)

1−ri,j . (7)

1 For fair tests, all the algorithms are based on Mahalanobis distances.
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After combining all the mi,j by Dempster’s rule, the obtained global plausibility
function Pl is shown to be proportional to the Pli,j and given for all r ∈ R by:

Pl({r}) ∝
∏

i,j

(1− βi,j)
ri,j (1 − αi,j)

1−ri,j . (8)

Finally, the calculation of the logarithm function of (8), βi,j and αi,j being all
considered strictly lower than 1, allows the authors to express the search of the
most plausible relation as a linear programming problem defined as follows with
n objects Ti, m observations Oj and wi,j = ln(1− βi,j)− ln(1− αi,j):

max
∑

i,j

wi,jri,j , i = {1, ..., n}, j = {1, ...,m}, (9)

with
n∑

i

ri,j ≤ 1 , (10)

m∑

j

ri,j ≤ 1 , (11)

ri,j ∈ {0, 1}, ∀i ∈ {1, ..., n}, ∀j ∈ {1, ...,m} . (12)

This problem can be solved using Hungarian or Munkres algorithms [9]. More
specifically, the authors also propose to solve an equivalent algorithm by consid-
ering, instead of (9), the following objective function:

max
∑

i,j

w′
i,jr

′
i,j , i = {1, ..., n}, j = {1, ...,m}, (13)

with w′
i,j = max(0, w′

i,j).
To experiment this algorithm with kinematic data based assignments, weights

αi,j and βi,j are computed in [8] as follows:

⎧
⎨

⎩

mi,j({1}) = αi,j = σ exp (−γdi,j)
mi,j({0}) = βi,j = σ(1 − exp (−γdi,j))
mi,j({0, 1}) = 1− αi,j − βi,j = 1− σ

(14)

where di,j is the distance between object Ti and observation Oj and γ is a
weighting parameter. Parameter σ is used to discount the information according
to the sensor reliability [10].

In this article, all sensors have an equal perfect reliability, and so σ = 0.9.
Moreover this parameter could be used in the same manner for all credal algo-
rithms. On the contrary, parameter γ will be optimized. Although appealing, set
of equations 14 remains empirical.
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Mercier et al.’s solution [3]: mass functions in the works of Mercier et al. are
calculated as in Equation (14), they are extended (vacuous extension [10]) to the
frame of discernment T ∗ = {T1, T2, T3, ∗} or O∗ = {O1, O2, O3, ∗} depending on
if we want to associate the observations to the targets or the targets to the obser-
vations. Element (∗) models the non-detection or new target appearance. Once
the mass functions are all expressed on a common frame of discernment, they
are conjunctively combined [10] and then a mass function is obtained for each
element Oj or Ti, according to the assignment point of view. Finally, The mass
functions are transformed to pignistic probabilities [10]. The assignment deci-
sion is made by taking the maximum pignistic probabilities among the possible
relations.

It is shown that this method is asymmetric when it comes to manage targets
appearances and disappearances: assigning observations to targets is different
than targets to observations. In this paper, only observations points of view are
considered.

Lauffenberger et al.’s solution [5]: at the credal level, this method is almost
similar to Mercier et al’s method. To avoid the asymmetry problem, the au-
thors, propose a different decision making strategy. For a given realization of
distances, they perform the previous algorithm in both sides and obtain two
pignistic probability matrices, which are not normalized since the weight on the
empty set resulting from the conjunctive combination is isolated and used for
a decision making purpose. A dual pignistic matrix is calculated by performing
an element-wise product of calculated two pignistic probabilities matrices. The
maximum pignistic probability is retained for each target (each row of the dual
matrix), if this pignistic probability is greater than a given threshold, the tar-
get is associated with the column corresponding element, else it is considered
as non-detected. The same procedure is performed for the observations (column
elements of the dual matrix). The probabilities are also compared to the con-
flict weight generated by the conjunctive combination. If the conflict weight is
greater that the dual matrix (rows/columns) probabilities, no assignment deci-
sion is made.

Fayad and Hamadeh’s solution [4]: mass functions calculations in this method
are different of the one adopted by the previous methods. For each observation
Oj , in Fig. 1, for example, a mass function over the set of known targets T ∗ =
{T1, T2, T3, ∗} is calculated. The element (∗) is a virtual target for which assigned
observations are considered as new targets. Distances between known targets and
each observation are sorted (minimum distance to maximum distance) and the
mass function weights are calculated by inverting the distances and then normaliz-
ing the weighs in order to get a representativemass functions. Oncemass functions
of all observations are calculated, they are combined and expressed on the set of all
possible hypotheses: [{(O1, ∗), (O2, ∗), (O3, ∗), (O4, ∗)}, {(O1, T1), (O2, ∗), (O3, ∗),
(O4, ∗)}, ...]. The combination is done by means of a cautious rule based on the
”min” operator. This method becomes quickly intractable when the number of
observations and/or targets gets over 3.
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3 Relation between Parameters γ and λ

These two parameters can be optimized through a training. Moreover, if one is
known the other can be deduced from it. To illustrate the necessity of choosing
adequate parameters, let us consider that d3,3, in Fig. 1, is equal to 1. The weights
concerning the assignment of O3 to T3 for two different values of γ = {0.6, 0.8}
are: αi,j = exp (−0.6) = 0.55 and βi,j = 1 − exp (−0.6) = 0.45. The parameter
αi,j , in this case, is greater that βi,j so O3 is associated to T3. In another hand,
if γ = 0.8, αi,j = exp (−0.8) = 0.45 and βi,j = 1− exp (−0.8) = 0.55, this means
that T3 is non-detected and O3 is considered as a new target.

Fig. 2 represents the evolution of functions αi,j and βi,j .
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exp(−γ d
i,j

)

1−exp(−γ d
i,j

)γ=−log(0.5)/λ

λ=15

Fig. 2. Parameter ”γ” determination

The fail-over distance (confirming/refuting the assignment) depends on the
value given to γ. It can be chosen in such a way to get exactly the same fail-over
distance as for the algorithm GNN, namely the parameter λ in Equation (4): it
can be seen in Fig. 2 that the fail-over weight is given by the junction of the
two curves (αi,j = βi,j), if we want to impose λ as a fail-over distance, we just
have to put exp (−γλ) = 1 − exp (−γλ) and then deduce the value of γ using
the following relation:

γ =
− log (0.5)

λ
. (15)

4 Assignment Tests in Tracking Context

Targets are evolving according to linear constant velocity models originally de-
fined for aircrafts [1]:

xi(k) = Axi(k) +Bu(k) + w(k) , (16)
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where:

A =

⎡

⎢⎢⎣

1 ΔT 0 0
0 1 0 0
0 0 1 ΔT
0 0 0 1

⎤

⎥⎥⎦ , B =

⎡

⎢⎢⎣

(ΔT )2/2 0
ΔT 0
0 (ΔT )2/2
0 ΔT

⎤

⎥⎥⎦ , (17)

where ΔT represents the sampling time and w represents a Gaussian state noise.
Input matrix is represented by B, where B′ is matrix B transpose. Vector u =
[ax ay]

T
in Equation (16) represents a given acceleration mode in x, y or both

x and y directions.
Sensor measurements are modeled by:

Oi(k) = Hxi(k) + v(k), (18)

where,

H =

[
1 0 0 0
0 0 1 0

]
, (19)

and v a Gaussian measurement noise.
Let us start by giving a numerical example showing the effect of an arbitrary

choice of the parameter γ, for example, in the concerned credal assignment meth-
ods.

Two time steps illustrating example: let D(k) = [di,j ] be a distances matrix at
time step k, it is calculated based on 3 known targets T1(k), T2(k), T3(k) and 3
observations O1(k), O2(k), O3(k):

D(k) =

⎡

⎣
6.9 8.1 7.1
9.9 6.9 9.1
10.3 11.2 6.4

⎤

⎦ . (20)

The resolution of this matrix using GNN and Fayad’s algorithms gives the fol-
lowing solution:

SG,F (k) =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ . (21)

The matrices α = [αi,j ] and β = [βi,j ], corresponding to the transformation of
the distances into mass functions are given by:

α(k) =

⎡

⎣
0.4514 0.4004 0.4425
0.3344 0.4514 0.3623
0.3213 0.2937 0.4746

⎤

⎦ , β(k) =

⎡

⎣
0.4486 0.4996 0.4575
0.5656 0.4486 0.5377
0.5787 0.6063 0.4254

⎤

⎦ , (22)

For these matrices, the credal algorithms (except Lauffenberger et al.’s algo-
rithm) gives the same solution as the GNN (see Equation (21)). Lauffenberger
et al.’s algorithm gives the following solution:

SL(k) =

⎡

⎣
0 0 0
0 0 0
0 0 0

⎤

⎦ . (23)
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This means that all the know targets are disappeared and all the observations
are considered as new targets. This illustrates the limits of the algorithm in
conflicting situation (nearby targets, given that the cross-distances are almost
equal). This is due to the fact that the assignment decision is made based on the
conflict generated by the mass functions combination, and when targets are close
to each other, the conflict is high and then considerably influence the assignment
decision.

At time step k + 1, the measurements O1(k + 1), O2(k + 1), O3(k + 1) of the
same known targets are affected by the sensor noise, which leads to a different
distance matrix D(k + 1):

D(k + 1) = D(k) + noise =

⎡

⎣
7.8 9.4 8.5
10 7.8 11
10.2 12 7.9

⎤

⎦ , (24)

The obtained solution in the GNN and Fayad’s algorithms is the same as in
Equation (21). In order to get the other credal algorithms solutions, these dis-
tances are transformed into mass functions in the following matrices:

α(k+1) =

⎡

⎣
0.4126 0.3516 0.3847
0.3311 0.4126 0.2996
0.3245 0.2711 0.4085

⎤

⎦ , β(k+1) =

⎡

⎣
0.4874 0.5484 0.5153
0.5689 0.4874 0.6004
0.5755 0.6289 0.4915

⎤

⎦ , (25)

The algorithms depending on γ give the following solution:

SD,M,L(k + 1) =

⎡

⎣
0 0 0
0 0 0
0 0 0

⎤

⎦ . (26)

This solution means that all the known targets are not detected and all the
acquired measurements are considered as new targets which is a false decision.

Let us now, consider the conflicting scenario of two nearby target, in (a) of
Fig. 3 and compare the performances of the assignment algorithms which are
given in (b) of the same figure.

The results in (b) Fig. 3 confirms the dependency of the algorithms on their
respective parameters. In this simulation the parameters λ and γ are linked
by the relation in Equation (15), therefore, λ depending algorithms and γ de-
pending ones have almost the same performances. For a given value of their
parameters, they supply the same performances, with the minimum error rate
(10%) depending only on the scenario (noises and so on).

The results in Fig. 4 represent a robustness test of a λ depending algorithm,
namely, GNN algorithm and a γ depending algorithm, namely, Denoeux’s algo-
rithm. The results shows that the algorithms are almost equivalent and similarly
dependent on their respective parameters and sensor noise. Another robustness
test is added in Fig. 5.

It can be seen in Fig. 5 that algorithms performances are sensitive and pro-
portional to the modeling error which is simulated by state noise variation. In
this simulation algorithms use the optimal values of their respective parameters.
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Fig. 3. (a): Conflicting scenario, (b): False assignments rates with the variation of the
algorithms parameters
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Fig. 4. (a): GNN algorithm robustness test, (b): Denoeux’s algorithm robustness test
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Fig. 6. (a): Target appearance scenario, (b): False decisions rate depending on the
parameter λ for GNN and Fayad’s algorithms and γ for Denoeux, Mercier and Lauf-
fenberger’s algorithms.

The following simulation (Fig. 6) confirms the almost equal performances on
the second kind of errors about new targets appearances. This second simulation
aims to calculate the false decisions rates, which means how often the newly
detected target ”Target 3”, in (a) Fig. 6, is erroneously assigned to a previously
non-detected one ”Target 2”.

It can be seen in (b) Fig. 6, that the false decisions rate depends on the
parameter λ for the GNN and Fayad’s algorithms, and depends on parameter
γ for the other algorithms. The result shows that the algorithms reach equal
performances for given values of λ and γ. When the probability p is known, λ
can be determined according to Equation (2) and γ can be deduce using Equation
(15).

A last simulation including the two precedent tests is added in the following.
It tries to train the optimal parameters λ and γ on the scenario of Fig. 7, without
any a priori knowledge.

Results of this simulation are obtained separately for λ depending algorithms
(GNN and Fayad’s algorithms) and γ depending algorithms (Denœux, Mercier
and Lauffenberger’s algorithms). They are depicted in Fig. 8.

As expected this last results show the necessity to adequately choose the
algorithms parameters for a tracking assignment purpose. They also confirms
that the trained optimal parameters λ = 46 and γ = 0.015 are linked by the
relation of Equation (15) presented in Section 3, since 0.015 � −log(0.5)/46.

A final test is added to give an idea on the computational complexity of the
studied algorithms. Computational times for an increasing number of observa-
tions are depicted in Fig. 9.

Test in Fig. 9 shows that Fayad’s algorithm is the most computationally de-
manding. It is followed by Mercier’s algorithm. GNN and Deneoux’s algorithms
seem to be the less complex algorithms.
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Fig. 8. (a): Performances of the algorithms depending on λ, (b): Performances of the
algorithms depending on γ
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5 Conclusion

This paper proposes a comparison study of various assignment algorithms in
a context of multi-target tracking based on kinematic data. These algorithms
depends on parameters that must be trained, otherwise, the performances are
decreased. Contrarily to previous articles, it is shown here that the standard
GNN algorithm with optimized parameters provides the same best performances
than other algorithms. It is also less time-consuming. It is shown that there exists
a relation between the optimized design parameters λ and γ.

It can be noticed that Lauffenberger’s algorithm makes wrong decisions in
conflicting scenarios. This is a priori due to the use of a decision making process
based on conflict, where generated conflict in such situation is high and then
refutes all assignments.

In the future, we will tackle the possible benefits of using belief functions in
multi-sensors cases.
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