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Abstract – In this paper, we study the problem of  joint tracking and classification of several targets at the same time. Targets are 

considered to be known and sufficiently separated so that they cannot be confused. Our goal is to propose a full methodology that is 

robust to missing information. The classical probabilistic approach with Bayesian tools is improved with belief functions. A simulation 

concerning the identification of go fast boats in a piracy problem shows that our approach improves previous results. 

 

 

1. Introduction 
In this article, we are interested in the problem of joint 

multi-target tracking and classification. This issue dates 

back to the 50’s with the development of radars for control 

flight systems or air-defense systems ([3]). Solutions based 

on targets models and their kinematic data (position, 

velocity, etc.), already exist in the Bayesian framework 

([4]) when there is enough statistical data. It is important to 

note that the task of classifying multiple targets 

simultaneously is much more complex than the single 

target classification one. Bayes rule resolves the former 

task by combining the measured likelihoods at a given time 

and the a priori classes probabilities. In multi-target case, 

the assignment of the measured likelihoods to the a priori 

probabilities requires another fundamental step which does 

not exist in the problem of single target tracking. It is the 

measures to targets assignment step, or the association 

step. The interested reader can refer to ([3] [1]). 

In the single target framework, the works of Smets and 

Ristic ([8]) concerning the evidential classification had 

greatly improved the already existing results in the purely 

Bayesian framework. 

This paper extends this methodology to the multi-target 

tracking and classification problem. This methodology can 

be applied to a large variety of situations when a large 

number of targets must be tracked and classified 

simultaneously in order to detect possible threats: 

pedestrian activities, aircrafts systems and so on. In this 

paper the application is the identification of go-fast boats 

used in modern piracy.  We denote that the targets can 

appear or disappear at different unknown times. The only 

constraint we took is that models of evolution of the 

various targets are known in advance. Previous works 

carrying on multi-target credal classification already exist 

 ([6] [9]) but without considering the targets tracking 

problem.  

In our work the tracking step is ensured by Kalman filters 

and classic Bayesian IMM (Interacting Multiple Model), 

only the classification step is ensured by belief functions. 

Due to a lack of space, the belief functions theory will not 

be exposed. Details of this theory can be found in ([7]). 

In section 2, the targets evolution model and the 

classification problem are exposed. Section 3 details the 

IMM equations for each tracked target. The assignment 

step and targets appearance and disappearance problem are 

also treated, since we are carrying on a multi-target 

problem. Section 4 treats the classification problem and 

gives the Bayesian and the credal solutions. Finally in 

section 5, a comparison is performed to detect go fast boats 

used in modern piracy ([10]). 

2. Targets evolution model 
The evolution model is first formulated for one target and 

then generalized to multi-target case. 

The target state vector at time   is denoted        it 

represents the target kinematic data such as position, 

velocity, etc. One target can be classified into   different 

classes . The  classes can be defined by: 

 

C=             
 

In the context of maritime surveillance, class can be: a 

commercial boat, military boat or a small agile boat, etc.. 

Differentiation between classes is usually done using 

constraints on the velocity and acceleration of the target. 

For simplicity, we assume that the target state evolves 

according to a linear model as follows: 

 

                                       
 

where,       is        state matrix depending on the 

target class.   is the input matrix.   is a known input.   is 

a state white Gaussian noise with covariance matrix  . 

Also for simplicity, we consider that the measure at time   

denoted        is linearly dependent on the target state, 

according to the following equation: 
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where,   is the observation matrix of dimension       . 

   is the measurement error, considered Gaussian noise 

with zero mean and covariance matrix  . 

The optimal Bayesian estimation of the target class at 

time   requires the calculation of the probability density 

function             corresponding to the class   , where       

                represents the cumulated measurement 

until the time  . The problem of estimating the targets state 

vector    is optimaly resolved using the IMM algorithm 

([2][3]).  

3. Adaptive estimation of the targets 

motion 
Over time a target can perform multiple movements, it can 

pass from a uniform to an accelerated one, or from a linear 

motion to a circular one, etc. Several works have been 

developed to represent the different movements that can 

make a target ([3]). Nowadays, there is no global model 

representing all possible modes of evolution of a target, 

that is why we adopt an adaptive approach to estimate the 

target motion. It consists on a multi-modal Kalman filters 

based estimation.   

The idea consists on the use of as much Kalman filters as 

evolution modes of the target. A Bayesian process is used 

to switch between the different evolution modes, and the 

most likely Kalman filters is selected to estimate the target 

state. This is the key idea of the Interacting Multiple Model 

algorithm ([2] [3]). 

The prediction and the update steps of the IMM 

algorithm are detailed in the following steps. For 

simplicity, the targets indices will be dropped out. 

3.1  IMM prediction step 

1. Initialization step 

 Kalman filters state     and covariance matrices    

initialisation, with        . 

 The different modes a priori probabilities   . 

 The       IMM transition matrix  . This matrix 

is used to mix the Kalman filters estimates. 

2. Mixing step 

 Mixing probabilities calculation: 

 

         
          

       
                      

 

where,    is the a priori probability that the target 

is in the mode   and the    is the probability that 

the target is in the mode   after interaction. 

 

             
                        

 

   

 

 

 Kalman state vectors and covariance matrices 

mixing: 

   
                                          

 

   

 

  
          

                                              

 

   

 

 

where,           is calculated by: 

 

                       
       

                      
       

 

3. Prediction step 

 State     and covariance matrices    prediction 

 

               
                             

             
                              

 

 Measurement     and covariance matrices    

prediction 

 

               
                            

 

The innovation covariance matrix is given by: 

 

                                        

 

4. Output (users) 

                        

 

   

              

 

                                     

 

   

 

 

where,            is the global predicted observation and 

         is its prediction covariance matrix. 

3.2  Observations to targets assignment 

The IMM prediction step provides a set of predicted 

measurements                       for the   already 

known targets. These predicted measurements will be 

compared with a set of   real measurements           
             at time  . An assignment problem will be 

resolved in such a way to efficiently recognize the origin 

of each real measurement: 

  Assignment matrix   calculation: 

 

   
     

                                        

    where, 

   
      

 

 
  

                                        

    and  

 

             

 



 

 

 The assignment problem posed by the matrix   

is solved using the auction algorithm ([3]) in such 

a manner to minimize the global distance between 

the predicted and the real measurements.  

3.3  Targets appearance and 

disappearance management 
     The score function is calculated for each target in order 

to manage appearance or disappearance. It is a sequential 

likelihood ratio representing the quality of each target's 

track [3]. The test's steps are summarized as follows:   

 

 hypotheses definition: 

  : hypothesis that the tracked target   is a false 

one. 

  : hypothesis that the tracked target   is a true 

one. 

 the log-likelihood ratio       of the target   at 

time   is sequentially calculated by: 

     

                                       
     where, 

 

         
                                         

    
                                         

   

 

    
        

  

               
  

  
 

 
             (17) 

 

where,    is the sensor detection probability and     is the 

acceptable false targets density. 

The distance between the target   and its assigned 

measurement   
  is calculated following (19). 

 once the ratio is calculated it is compared to two 

thresholds: 

if         , hypothesis    is accepted and the target 

  is confirmed. 

if         , hypothesis    is accepted and the target 

  is deleted. 

if            , non of the hypotheses is accepted 

and the target continue to be tracked. 

The thresholds    and    are given by:  

 

       
 

   
 ,            

   

 
  

  

with,   a false target confirmation probability and   a true 

target deletion probability. 

3.4  IMM update step 

Each IMM updates its target state estimation with the 

measurement provided by the assignment step. 

1.    Kalman filters likelihoods calculation 

 

 Innovation calculation 

 

                  
                              

 

based on this innovation, a normalized  Euclidean distance can be 

calculated 

  
       

                                           
 

 Kalman filters likelihoods 

  

  
  

        
    

          
                               

 

where,   is the measurement dimension 

2.    Kalman filters probabilities update: 

 

        
   

                                    

 

where the normalizing constant   is given by: 

     
   

      

 

   

    

3.    Kalman filters estimates update 

 

 Gain calculation 

 

                                                   
 

 Kalman filters covariance matrices update 

 

                                                   
 

 Kalman state vectors update 

 

                   
                                       

 

4.    Global state estimate (for users) 

 

                                               

 

   

 

4. Target classification 
      Usually, the targets classification is performed using 

the target estimated kinematic data such as velocity and 

acceleration. 

Knowing the different possible classes for a target, Smets 

and Ristic ([8]) proposed the use of as many IMMs as 

classes, where, each IMM includes the different modes of 

each class. 

Ristic et al. ([4]) thought that it is better to consolidate all 

the possible evolution modes in one IMM and retrieve the 

likelihood of each class by knowing their respective 

modes. 

The following paragraph describes the Bayesian 

classification adopted by Ristic and al. ([4]) and the credal 

classification used in ([5]). 



 

 

4.1     Bayesian classification 

Let                  the set of targets motion 

possible modes. We define the set of modes belonging to 

the class    by: 

   
             

  , where,    is the number of 

modes, with           

From the equations the IMMs update step, one can have 

respectively, the likelihood    and the probability    of 

each evolution mode  . 
The class likelihood             is obtained as 

follows: 

      
 

 
                                                

  

   

 

with:  

  
  

  

   
  
   

 

 

The classes probabilities can be recursively obtained as 

follows: 

         
  

              
   

                      

 

where,          represents the a priori probability of 

the class   . 

4.2     Classification with belief functions 

When using belief functions, the IMMs provides the 

users with plausibilities        instead of likelihoods ([5] 

[9]). Once the plausibility        of each class    is 

obtained. we can calculate the mass functions on each 

element       :  

 

             

    

            

     

                    

 

In order to make a decision on the tracked target class, the 

mass functions are transformed to a pignistic probability 

using the following equation: 

 

          
 

   

    

      
    

                          

 

where,      is the belief mass on the empty set. Then the 

BetP functions are used as normal probabilities. This 

approach enables to convey uncertain or missing data the 

longest possible time through the algorithm. The whole 

approach with belief functions is called a credal 

classification, here it is compared to the Bayesian 

classification. 

5     Two targets classification example 

In this section, we present and compare the results of 

both Bayesian and credal classification of two maritime 

targets.   

The expected classes of the targets are: 

 Class 1: class of targets having a low maneuver 

capacities (e.g. cargo). 

 Class 2: class of targets having a medium 

maneuver capacities (e.g. military boat). 

 Class 3: class of targets having a high 

maneuver capacities (e.g. small agile boats 

called go-fast boats in modern piracy). 

The state vector                     represents the 

position and the velocity on (     directions, it is the same 

for both targets. The state vector evolves following the 

state model (1) , where: 

 

   

  
  

    
  
  

  
  

    
  
  

          

     
  

 

     
  

 
      

 

with   represents the sampling time. 

The targets measurements are taken according to the 

measurement model (2),  with: 

 

   
  
  

     
  
  

 
 

      

 

The vector           of state model in the case of our 

application represents the targets acceleration, it is 

considered as a deterministic input. The differences in the 

acceleration capabilities allow to distinguish between the 

targets different classes. 

The acceleration limitations for the a priori known 

classes are expressed as follows: 

 

              

 
where,   =0,1g, 0,3g, 0,5g respectively, for the classes 

  ,    and   , with        
   

 
is the gravitational 

acceleration. 

The different acceleration modes and their distribution 

over the classes are illustrated in Fig.1. 



 

 

 

FIG. 1 : Different evolution modes 

In our simulation, each target's IMM is composed about 

the    evolution modes of the figure FIG. 1. The modes are 

distributed over the three possible classes, as follows: 

        : modes of the class 1. 

                : modes of the class 2. 

                 : modes of the class 3. 

The non zero elements of the transition matrix   of the 

IMM represent the interconnections between the modes 

(see FIG. 1). The diagonal elements of the transition matrix 

are equal to       and the remaining     is uniformly 

distributed on the non zero elements of the same row, in 

such a way to have a stochastic matrix. 

5.1     Simulation results 

The two dimensional trajectories of  the targets are 

given in FIG. 2. As it can be seen, the trajectory of both 

targets consists of three constant velocity evolution 

segments and two maneuvers. The two targets do not 

disappear in this example. 

 

FIG. 2 : Targets trajectories 

The first maneuver, for both targets, is performed 

between the      and      sampling times: The first target 

performs a sharp acceleration         in the   direction, 

while the second one performs a medium acceleration 

        in the same direction. 

The second maneuver is performed between the      

and      sampling times. In this time, both targets 

performs a sharp deceleration         , in   direction. 

All the upcoming results represent the average over    

simulations. 

The Bayesian classification results of the two targets are 

respectively presented in the figures FIG. 3 and FIG. 4. 

 

FIG. 3 : Bayesian classification of the target 1 

 

FIG. 4 : Bayesian classification of the target 2 

Firstly, the targets are not adequately classified at the 

beginning. In fact, the classifier tends to increase the 

probability of the class 1, during the first movement step, 

where we are supposed to have a perfect doubt between the 

three classes. This is due to difference of the number of 

modes in each class, such as, more the class contains 

mode, less its likelihood is representative.  



 

 

Finally, we notice that the two targets are correctly 

classified  by the end of the simulation. The first target was 

in the class 1 and goes to the class 3 after its first sharp 

maneuver. The second target remains in doubt between the 

second and the third classes after its first medium 

maneuver. It goes to the class 3 after its second sharp 

maneuver. 

Figure FIG. 5 and FIG. 6 represent the results of credal 

classification of the first and the second target respectively. 

 

FIG. 5: credal classification of the target 1 

 

FIG. 6: credal classification of the target 2 

Figures  FIG. 5 and FIG. 6 show that the obtained credal 

classification results are better than those obtained using 

the Bayesian classification (FIG. 3 and FIG. 4) In fact, in 

the last credal results, we can see that the two targets are 

correctly classified during the three different steps of the 

movement. Credal classifier does not favor one class over 

another in case of doubt, as is the case for the Bayesian 

classification. 

The ability of the credal formalism to associate one 

mass function to a set of classes in case of doubt, (e.g. 

associate one mass function to the set of the three classes 

in the first step of the targets movements in our example), 

allows to have three equivalent pignistic probabilities for 

the classes in doubt when taking a decision. 

6.     Conclusion 

Multi-target classification is a fundamental problem, when 

it comes to classify multiple targets simultaneously. It is 

much more complex than the single target classification 

problem. Solutions already exist with a Bayesian 

framework ([3]) for air defense systems. Smets and Ristic 

([8])  showed, in the single target framework, that the 

belief functions allow to greatly improve the Bayesian 

classification results. In this article, we mixed a target 

tracking step performed with classical IMMs and Kalman 

filters and a classification step based on belief functions. 

We have adopted the Ristic and al. ([4]) idea for the 

tracking step, which consists on the use of only one IMM 

containing all the possible evolution modes for each target. 

Our results show that the purely Bayesian approach can be 

improved with belief functions. The whole methodology 

can be applied in various problems provided a model of 

evolutions of the various targets is known.  
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