Objective

Exchange and manage imperfect information in Inter-Vehicle Communication using belief functions.

Context

- Have intelligent, reliable and clean vehicles.
 - Lead developed research to industrialization.
- Share different types of events, and guide drivers to find a parking place or to get traffic information.

Belief Functions

- Transferable Belief Model (Smets 1994).

Dynamic Part: Conjunctive Rule of Combination

\[m_1 \otimes m_2 (A) = \sum_{B \cap C = A} m_1 (B) \cdot m_2 (C), \forall A \subseteq \Omega \]

\[m_1 \] and \[m_2 \] obtained from distinct and reliable sources.

Decision Level: Pignistic Probability

\[\text{BetP}(\omega) = \sum_{A \subseteq \Omega, \omega \in A} m(A) \frac{1}{|A|} (1 - m(\emptyset)), \forall \omega \in \Omega \]

Static Part: Mass Function Definition

Knowledge regarding the answer to a given question, where:

\[\sum_{A \subseteq \Omega} m_\Omega (A) = 1 \]

Application and Scenario

Embarked in HTC Touch Diamond mobiles: Windows Mobile, Wi-Fi and GPS equipped. It allows sending messages where:

- \[m(\{\text{ev}\}) = 1 - m(\Omega) \] if user perceived the event;
- \[m(\{\neg\text{ev}\}) = 1 - m(\Omega) \] if not.

Conclusion and Future Work

- The method allows the management of uncertain events.
- This application is useful also for pedestrians to share other kind of events.

Reflections and Future work:
- Consider relation between events.
- Consider more than two states in the frame of discernment.