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Abstract—In this paper, the contextual discounting of a belief
function is extended thanks to the canonical disjunctive decompo-
sition of this belief function. A more general family of correction
mechanisms allowing one to weaken the information provided by
a source is then introduced, as well as the dual of this family,
allowing one to strengthen a belief function.
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I. INTRODUCTION

In the Dempster-Shafer theory of belief functions [2], [14],
the reliability of a source of information is classically taken
into account by the discounting operation [14, page 252],
which transforms a belief function into a weaker, less infor-
mative one. This operation is usually important in information
formation [1], [5], [6], [10], [11], [13], [20].

Introduced in [9], the contextual discounting is a refinement
of the discounting operation. It takes into account the fact that
the reliability of a source of information can be expected to
depend on the true answer of the question of interest.

For instance, in medical diagnosis, depending on his/her
specialty, experience or training, a physician may be more or
less competent to diagnose some types of diseases. Likewise,
in target recognition, a sensor may be more capable of
recognizing some types of targets while being less effective
for other types.

In this contextual model, the agent in charge of the fu-
sion process or the decision making can hold a knowledge,
regarding the reliability of a source of information, which
depends on elements which form a partition (a coarsening)
of the universe of discourse. For example, a sensor in charge
of recognizing targets can have different reliabilities knowing
that the target is a helicopter, an airplane or a rocket, but not
reliabilities knowing that the target is a helicopter or a rocket,
and a helicopter or an airplane.

In this paper, the contextual discounting operation of a belief
function, thanks to its canonical disjunctive decomposition [3],
is shown to be a particular case of a more general correction
process [8] allowing the discounting of a belief function in
a finer way. Moreover,the dual version of this correction
mechanism, allowing one to reinforce a belief function, is also
introduced.

To develop the justifications of these mechanisms, belief
functions are interpreted as expressing weighted opinions,
irrespective of any underlying probability distributions, and
the Transferable Belief Model [16], [17], [19] is adopted.

This paper is organized as follows. Background material
needed on belief functions is recalled in Section II, then a new
family of correction mechanisms encompassing the contextual
discounting in particular is introduced in Section III, and
finally, Section IV concludes this paper.

II. BELIEF FUNCTIONS: BASIC CONCEPTS

A. Representing information

Let us consider an agent Ag in charge of making a decision
regarding the answer to a given question Q of interest.

Let Ω = {!1, . . . , !K}, called the frame of discernment, be
the finite set containing the possible answers to question Q.

The information held by agent Ag regarding the answer
to question Q can be quantified by a basic belief assignment
(BBA) or mass function mΩ

Ag , defined as a function from 2Ω

to [0, 1], and verifying:∑
A⊆Ω

mΩ
Ag(A) = 1 . (1)

Function mΩ
Ag describes the state of knowledge of agent

Ag regarding the answer to question Q belonging to Ω. By
extension, it also represents an item of evidence that induces
such a state of knowledge. The quantity mΩ

Ag(A) is interpreted
as the part of the unit mass allocated to the hypothesis: “the
answer to question Q is in the subset A of Ω”.

When there is no ambiguity, the full notation mΩ
Ag will be

simplified to mΩ, or even m.
The following definitions are considered.
∙ A subset A of Ω such that m(A) > 0 is called a focal

element of m.
∙ A BBA m with only one focal element A is said to be

categorical and is denoted mA; we thus have mA(A) =
1.

∙ Total ignorance is represented by the BBA mΩ, called
the vacuous belief function.

∙ A BBA m is said to be:
– dogmatic if m(Ω) = 0;



– non-dogmatic if m(Ω) > 0;
– normal if m(∅) = 0;
– subnormal if m(∅) > 0;
– simple if m has no more than two focal sets, Ω being

included.
Finally, m denotes the negation of m [4], defined by

m(A) = m(A), for all A ⊆ Ω.

B. Combining pieces of information

Two BBAs m1 and m2 induced by distinct and reliable
sources of information can be combined using the conjunctive
rule of combination (CRC), also referred to as the unnormal-
ized Dempster’s rule of combination, defined for all A ⊆ Ω
by:

m1 ∩⃝m2(A) =
∑

B∩C=A

m1(B)m2(C) . (2)

Alternatively, if we only know that at least one of the
sources is reliable, BBAs m1 and m2 can be combined using
the disjunctive rule of combination (DRC), defined for all
A ⊆ Ω by:

m1 ∪⃝m2(A) =
∑

B∪C=A

m1(B)m2(C) . (3)

C. Marginalization and vacuous extension on a product space

A mass function defined on a product space Ω×Θ may be
marginalized on Ω by transferring each mass mΩ×Θ(B) for
B ⊆ Ω×Θ to its projection on Ω:

mΩ×Θ↓Ω(A) =
∑

B⊆Ω×Θ,
Proj(B↓Ω)=A

mΩ×Θ(B), (4)

for all A ⊆ Ω where Proj(B ↓ Ω) denotes the projection of
B onto Ω.

Conversely, it is usually not possible to retrieve the original
BBA mΩ×Θ from its marginal mΩ×Θ↓Ω on Ω. However, the
least committed, or least informative BBA [15] such that its
projection on Ω is mΩ×Θ↓Ω may be computed. This defines
the vacuous extension of mΩ in the product space Ω×Θ [15],
noted mΩ↑Ω×Θ, and given by:

mΩ↑Ω×Θ(B) =

{
mΩ(A) if B = A×Θ, A ⊆ Ω,
0 otherwise. (5)

D. Conditioning and ballooning extension on a product space

Conditional beliefs represent knowledge that is valid pro-
vided that an hypothesis is satisfied. Let m be a mass function
and B ⊆ Ω an hypothesis; the conditional belief function m[B]
is given by:

m[B] = m ∩⃝mB . (6)

If mΩ×Θ is defined on the product space Ω × Θ, and � is
a subset of Θ, the conditional BBA mΩ[�] is defined by
combining mΩ×Θ with mΘ↑Ω×Θ

� , and marginalizing the result
on Ω:

mΩ[�] =
(
mΩ×Θ ∩⃝mΘ↑Ω×Θ

�

)↓Ω
. (7)

Assume now that mΩ[�] represents the agent’s beliefs on Ω
conditionally on �, i.e., in a context where � holds. There are

usually many BBAs on Ω×Θ, whose conditioning on � yields
mΩ[�]. Among these, the least committed one is defined for
all A ⊆ Ω by:

mΩ[�]⇑Ω×Θ(A× � ∪ Ω× �) = mΩ[�](A). (8)

This operation is referred to as the deconditioning or balloon-
ing extension [15] of mΩ[�] on Ω×Θ.

E. Discounting

When receiving a piece of information represented by a
mass function m, agent Ag may have some doubts regarding
the reliability of the source that provided this information.
Such metaknowledge can be taken into account using the
discounting operation introduced by Shafer [14, page 252],
and defined by:

�m = (1− �)m+ � mΩ , (9)

where � ∈ [0, 1].
A discount rate � equal to 1, means that the source is

not reliable and the piece of information it provides cannot
be taken into account, so Ag’s knowledge remains vacuous:
mΩ
Ag = 1m = mΩ. On the contrary, a null discount rate

indicates that the source is fully reliable and the piece of
information is entirely accepted: mΩ

Ag = 0m = m. In practice,
however, agent Ag usually does not know for sure whether
the source is reliable or not, but has some degree of belief
expressed by: {

mℛAg({R}) = 1− �
mℛAg(ℛ) = �,

(10)

where ℛ = {R,NR}, R and NR standing, respectively, for
“the source is reliable” and “the source is not reliable”. This
formalization yields expression (9), as demonstrated by Smets
in [15, Section 5.7].

The discounting operation (9) of a BBA m is also equivalent
to the disjunctive combination (3) of m with the mass function
mΩ

0 defined by:

mΩ
0 (A) =

⎧⎨⎩
� if A = ∅
� if A = Ω

0 otherwise,
(11)

with � ∈ [0, 1] and � = 1− �.
Indeed:

m ∪⃝mΩ
0 (A) = m(A)mΩ

0 (∅) = �m(A) = �m(A), ∀A ⊂ Ω ,

and

m ∪⃝mΩ
0 (Ω) = m(Ω)mΩ

0 (∅) +mΩ
0 (Ω)

∑
A⊆Ωm(A)

= �m(Ω) + � = �m(Ω) .



F. Contextual Discounting based on a coarsening

Let Θ = {�1, . . . , �L} be a coarsening of Ω, which means
that �1, . . . , �L form a partition of Ω [14, chapter 6].

Unlike (10), in the contextual model, agent Ag is assumed
to hold beliefs on the reliability of the source of information
conditionally on each �ℓ, ℓ ∈ {1, . . . , L}:{

mℛAg[�ℓ]({R}) = 1− �ℓ = �ℓ
mℛAg[�ℓ](ℛ) = �ℓ .

(12)

For all ℓ ∈ {1, . . . , L}, �ℓ + �ℓ = 1, and �ℓ represents the
degree of belief that the source is reliable knowing that the
true answer of the question of interest belongs to �ℓ.

In the same way as in the discounting operation (9), agent
Ag considers that the source can be in two states: reliable or
not reliable [9], [15]:
∙ If the source is reliable (state R), the information
mΩ
S it provides becomes Ag’s knowledge. Formally,

mΩ
Ag[{R}] = mΩ

S .
∙ If the source is not reliable (state NR), the information
mΩ
S it provides is discarded, and Ag remains in a state

of ignorance: mΩ
Ag[{NR}] = mΩ.

The knowledge held by agent Ag, based on the information
mΩ
S from a source S as well as metaknowledge mℛAg concern-

ing the reliability of the source can then be computed by:
∙ Deconditioning the L BBAs mℛAg[�ℓ] on the product

space Ω×ℛ using (8);
∙ Deconditioning mΩ

Ag[{R}] on the same product space Ω×
ℛ using (8) as well;

∙ Combining them using the CRC (2);
∙ Marginalizing the result on Ω using (4).
Formally:

mΩ
Ag[m

Ω
S ,m

ℛ
Ag]

=
(

∩⃝Lℓ=1m
ℛ
Ag[�ℓ]

⇑Ω×ℛ ∩⃝mΩ
Ag[{R}]⇑Ω×ℛ)↓Ω . (13)

As shown in [9], the resulting BBA mΩ
Ag , only depends on

mS and on the vector � = (�1, . . . , �L) of discount rates. It
is then denoted by �

Θm.
Proposition 1 ( [9, Proposition 8]): The contextual dis-

counting �
Θm on a coarsening Θ of a BBA m is equal to

the disjunctive combination of m with a BBA mΩ
0 such that:

mΩ
0 = mΩ

1 ∪⃝mΩ
2 ∪⃝ . . . ∪⃝mΩ

L , (14)

where each mΩ
ℓ , ℓ ∈ {1, . . . , L}, is defined by:

mΩ
ℓ (A) =

⎧⎨⎩
�ℓ if A = ∅
�ℓ if A = �ℓ

0 otherwise.
(15)

Remark 1: Two special cases of this discounting operation
can be considered.
∙ If Θ = {Ω} denotes the trivial partition of Ω in one

class, combining m with m0 defined by (11) is equivalent
to combining m with m0 defined by (14), so this con-
textual discounting operation is identical to the classical
discounting operation.

∙ If Θ = Ω, the finest partition of Ω, this discounting is
simply called contextual discounting and denoted �m.
It is defined by the disjunctive combination of m with
the BBA mΩ

1 ∪⃝mΩ
2 ∪⃝ . . . ∪⃝mΩ

K , where each mΩ
k , k ∈

{1, . . . ,K} is defined by mΩ
k (∅) = �k and mΩ

k ({!k}) =
�k.

G. Canonical conjunctive and disjunctive decompositions

In [18], extending the notion of separable BBA introduced
by Shafer [14, chapter 4], Smets shows that each non-dogmatic
BBA m can be uniquely decomposed into a conjunctive
combination of generalized simple BBAs (GSBBAs), denoted
Aw(A) with A ⊂ Ω, and defined from 2Ω to ℝ by:

Aw(A) : Ω 7→ w(A)
A 7→ 1− w(A)
B 7→ 0 , ∀B ∈ 2Ω ∖ {A,Ω} ,

(16)

with w(A) ∈ [0,∞) (in fact w(A) ∈ (0,∞) as m is non-
dogmatic). The function w: 2Ω ∖ {Ω} → (0,∞) is another
representation of a non dogmatic mass function and is called
the conjunctive weight function. Let us also note that the
higher is the weight w(A), the higher is the incertitude on
A, then a weight will be more precisely called an uncertain
weight1.

Every non-dogmatic BBA m can then be canonically de-
composed into a conjunctive combination of GSBBAs:

m = ∩⃝A⊂ΩA
w(A) . (17)

In [3], Denœux introduces another decomposition: the
canonical disjunctive decomposition of a subnormal BBA into
negative GSBBAs (NGSBBAs), denoted Av(A) with A ⊃ ∅,
and defined from 2Ω to ℝ by:

Av(A) : ∅ 7→ v(A)
A 7→ 1− v(A)
B 7→ 0 , ∀B ∈ 2Ω ∖ {∅, A} ,

(18)

with v(A) ∈ (0,∞).
Every subnormal BBA m can be canonically decomposed

into a disjunctive combination of NGSBBAs:

m = ∪⃝A⊃∅Av(A) . (19)

Indeed, as remarked in [3], the negation of m can also be
conjunctively decomposed as soon as m is subnormal (in this
case, m is non-dogmatic). Then:

m = ∩⃝A⊂ΩA
w(A)

⇒ m = ∩⃝A⊂ΩA
w(A)

= ∪⃝A⊂ΩA
w(A)

= ∪⃝A⊃∅Aw(A) .

(20)

The relation between functions v and w is then v(A) = w(A)
for all A ∕= ∅.

1As remarked by Didier Dubois after the presentation of F. Pichon’s PhD
thesis [12].



III. EXTENDING THE CONTEXTUAL DISCOUNTING

In this section, the contextual discounting operation is
extended and shown to be a particular member a family of
correction mechanisms based on the disjunctive decomposition
of a subnormal BBA introduced by Denœux in [3].

According to the previous definitions (16) and (18), BBAs
mℓ, ℓ ∈ {1, . . . , L}, defined in (15) by mℓ(∅) = �ℓ and
mℓ(�ℓ) = �ℓ, can be denoted �ℓ�ℓ or ��ℓ in a simple way.

From (14) and (19), the contextual discounting on a coars-
ening Θ = {�1, . . . , �L} of Ω of a subnormal BBA m is thus
defined by:

�
Θm = m ∪⃝��1

∪⃝ . . . ∪⃝��L
= ∪⃝A⊃∅Av(A) ∪⃝��1

∪⃝ . . . ∪⃝��L .

In particular, as Av1(A) ∪⃝Av2(A) = Av1v2(A) for all non-
empty subset A of Ω:
∙ The classical discounting of a subnormal BBA m =
∪⃝A⊃∅Av(A) is defined by:

�m = Ω�v(Ω) ∪⃝Ω⊃A⊃∅Av(A) ; (21)

∙ The contextual discounting (cf. Remark 1) of a subnormal
BBA m = ∪⃝A⊃∅Av(A) is defined by:
�m = ∪⃝!k∈Ω{!k}�kv({!k}) ∪⃝A⊂Ω,∣A∣>1Av(A) . (22)

These discounting operations are then particular cases of a
more general correction mechanism defined by:

�∪m = ∪⃝A⊃∅A�Av(A), (23)

where �A ∈ [0, 1] for all A ∕= ∅ and � is the vector {�A}A ∕=∅.
In [9], the interpretation of each �A has been given only in

the case where the union of the subsets A forms a partition
of Ω, �A being interpreted as the degree of belief held by the
agent regarding the fact that the source is reliable, knowing
that the value searched belongs to A (cf Section II-F).

Instead of considering (12), let us now suppose that agent
Ag holds beliefs regarding the reliability of the source, con-
ditionally on each subset A of Ω:{

mℛAg[A]({R}) = 1− �A = �A
mℛAg[A](ℛ) = �A ,

(24)

where �A ∈ [0, 1].
In the same way as in Section II-F, the knowledge held by

agent Ag, based on the information mΩ
S from a source and

on metaknowledge mℛAg (24) regarding the reliability of this
source, can be computed as follows:

mΩ
Ag[m

Ω
S ,m

ℛ
Ag]

=
(

∩⃝A⊆Ωm
ℛ
Ag[A]⇑Ω×ℛ ∩⃝mΩ

Ag[{R}]⇑Ω×ℛ)↓Ω . (25)

Proposition 2: The BBA mΩ
Ag resulting from (25) only

depends on mΩ
S and the vector � = {�A}A⊆Ω. The result

is denoted �
2Ωm and is equal to the disjunctive combination of

mΩ
S with a BBA mΩ

0 defined by:

mΩ
0 (C) =

∏
∪A=C

�A
∏
∪B=C

�B , ∀C ⊆ Ω. (26)

Proof: For each A ⊆ Ω, the deconditioning of mℛAg[A]
on Ω×ℛ is given by:

mℛAg[A]⇑Ω×ℛ(A× {R} ∪A×ℛ) = �A, (27)

mℛAg[A]⇑Ω×ℛ(Ω×ℛ) = �A. (28)

With A ∕= B:

(A× {R} ∪A×ℛ) ∩ (B × {R} ∪B ×ℛ)

= (A ∪B)× {R} ∪ (A ∪B)×ℛ .

Then:

∩⃝A⊆Ωm
ℛ
Ag[A]⇑Ω×ℛ(C × {R} ∪ C ×ℛ)

=
∏
∪D=C

�D
∏
∪E=C

�E , ∀C ⊆ Ω ,

or, by exchanging the roles of C and C:

∩⃝A⊆Ωm
ℛ
Ag[A]⇑Ω×ℛ(C × {R} ∪ C ×ℛ)

=
∏
∪D=C

�D
∏
∪E=C

�E , ∀C ⊆ Ω .

It remains to combine conjunctively mΩ
Ag[{R}]⇑Ω×ℛ and

∩⃝A⊆Ωm
ℛ
Ag[A]⇑Ω×ℛ which have focal sets of the form B ×

{R} ∪ Ω× {NR} and C × {R} ∪ C ×ℛ, respectively, with
B,C ⊆ Ω. The intersection of two such focal sets is:

(C × {R} ∪ C ×ℛ) ∩ (B × {R} ∪ Ω× {NR})
= B × {R} ∪ C × {NR} ,

and it can be obtained only for a particular choice of B and
C. Then:

∩⃝A⊆Ωm
ℛ
Ag[A]⇑Ω×ℛ ∩⃝mΩ

Ag[{R}]⇑Ω×ℛ(B×{R}∪C×{NR})

=

⎡⎣ ∏
∪D=C

�D
∏
∪E=C

�E

⎤⎦mΩ
S (B) . (29)

Finally, the marginalization of this BBA on Ω is given for all
subsets A of Ω, by:

�m(A) =
∑

B∪C=A

⎡⎣ ∏
∪D=C

�D
∏
∪E=C

�E

⎤⎦mΩ
S (B) . (30)

Let us note that the above proof has many similarities with
proofs presented in [9, Sections A.1 and A.3].

As in the case of contextual discounting operations con-
sidered in Section II-F, the BBA mΩ

0 defined in Proposition
2 admits a simple decomposition described in the following
proposition.

Proposition 3: The BBA mΩ
0 defined in Proposition 2 can

be rewritten as:
mΩ

0 = ∪⃝A⊃∅A�A . (31)

Proof: Directly from (26) and the definition (3) of the
DRC.



From (31), the contextual discounting �
2Ωm of a subnormal

BBA m = ∪⃝A⊃∅Av(A) is defined by:

�
2Ωm = ∪⃝A⊃∅Av(A) ∪⃝A⊃∅A�A

= ∪⃝A⊃∅A�Av(A)

= �∪m .
(32)

Contextual discounting �
2Ωm is thus equivalent to correction

mechanism �∪m introduced in this section. Each coefficient
�A can then be interpreted as the degree of belief held by the
agent Ag regarding the fact that the source is reliable knowing
that the true answer to the question Q of interest belongs to
A.

In a similar way, a correction mechanism for a non-dogmatic
BBA m can be defined, from the conjunctive decomposition
of m, by:

�∩m = ∩⃝A⊂ΩA
�Aw(A) ; (33)

where ∀A ⊂ Ω, �A ∈ [0, 1], and � is the vector {�A}A⊂Ω.
This process allows the reinforcement of a BBA m, as the

smaller is the uncertain weight, the higher is the mass on A.
It has been recently considered in [7] to combine partially
non-distinct beliefs. This paper offers an interpretation for
coefficients �A, and the link between this mechanism and the
contextual discounting is presented in the following.

Correction mechanisms �∩m (23) and �∪m (33) are related
in the following way.

Let us consider a subnormal BBA m, m is then non-
dogmatic:

�∩m = ∩⃝A⊂ΩA
�Aw(A) . (34)

Then:
�∩m = ∩⃝A⊂ΩA

�Aw(A)

= ∪⃝A⊂ΩA
�Aw(A)

= ∪⃝A⊃∅A�Aw(A)

= ∪⃝A⊃∅A�Av(A)

= �∪m

(35)

These two correction mechanisms can thus be seen as
belonging to a general family of correction mechanisms.
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IV. CONCLUSION AND FUTURE WORKS

In this paper a family of correction mechanisms based on
the canonical decompositions of belief function, encompassing
in particular the contextual discounting, has been presented
and justified. It allows one to discount or reinforce a belief
function.

Future works will aim at testing it on real data. Likewise, it
would also be interesting to automatically learn the coefficients
of the correction mechanisms from data, as done for the
classical and the contextual discounting operations [5], [9].
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