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Abstract - The discounting operation is a well

known operation on belief functions, which has

proved to be useful in many applications. How-

ever, the discounting operation only allows one to

weaken a source, whereas it is sometimes useful to

strengthen it when it is deemed to be too cautious.

For that purpose, the de-discounting operation was

introduced as the inverse operation of the discount-

ing operation by Denœux and Smets. From another

point of view, Zhu and Basir introduced an extension

of the classical discounting operation by allowing the

discount rate to be out of the range [0,1]. This op-

eration performs a discounting or a de-discounting

of a belief function. A new interpretation of this

scheme is presented in this paper. A more general

form of reinforcement process, as well as a parame-

terized family of transformations encompassing all

previous schemes, are also introduced.

Keywords: Dempster-Shafer theory, Evidence theory,

discounting, de-discounting.

1 Introduction

In 1976, in his seminal book [7], Shafer introduced the
discounting operation, allowing one to take into ac-
count the reliability of a source of information, and
transforming a belief function into a weakened or less
informative one. Nowadays, this discounting operation
is an important tool of the Dempster-Shafer theory of
belief functions. It is used in many applications, partic-
ularly those dealing with information fusion. The dis-
counting operation is controled by a constant α ∈ [0, 1]
called the discount rate. Smets [1] justified this opera-
tion [9] in the Transferable Belief Model (TBM) frame-
work [10, 12], using a simple model of reliability: if the
source is reliable, then information provided by this
source is totally accepted; otherwise, the source is not
reliable, and the information coming from this source

is neglected. The quantity 1 − α is interpreted as a
degree of belief in the reliability of the source.

The discounting operation allows one to “tune
down” a source. However, when a source is too cau-
tious, it could be beneficial to give more weight to the
information it provides, i.e., to reinforce the source’s
beliefs.

In [2], Denœux and Smets have introduced the no-
tion of de-discounting of a belief function, as the inverse
of the discounting process: instead of uniformly trans-
ferring a fraction of the mass from each focal set to
the universe Ω, a fraction of the mass of the universe
can be uniformly dispatched to each focal element, as
long as m(Ω) < 1. Thus, the de-discounting allows
one to transform a belief function into a strengthened,
reinforced, or more informative one.

It would be convenient to have a single tool for ma-
nipulating belief functions including these two possibil-
ities: weakening or reinforcing a belief function, what
is called here a general correction mechanism. In [14],
Zhu and Basir recognized the necessity to extend the
discounting process, in order to augment or discount
belief functions in particular. They achieved this goal
by retaining the discounting equation, and allowing the
discount rate α to be in the range [ −mΩ

S (Ω)

1−mΩ
S (Ω)

, 1]. If α ∈

[0, 1], αm is a discounting of mΩ
S ; if α ∈ [ −mΩ

S (Ω)

1−mΩ
S (Ω)

, 0],
αm is a de-discounting of mΩ

S , as shown below; if α = 0,
αm remains equals to mΩ

S . Although this extended
scheme was shown to be useful in a real-world appli-
cation [14], it lacks a proper justification, since it is no
longer possible to interpret 1− α as a degree of belief
in the reliability of the source. Such an interperation
is proposed below.

In this paper, the Transferable Belief Model (TBM)
framework is accepted as a general model of uncer-
tainty. The TBM is a subjectivist, non probabilistic
interpretation of the Dempster-Shafer theory of belief
functions [7, 11]. However, our approach is compatible
with other interpretations.



We first recall some basic concepts on the TBM,
and introduce some definitions as well as the main
tools used in this paper. Then, a general reinforce-
ment process is introduced, of which the de-discounting
process is a particular case. Next, general corrections
allowing discounting and de-discounting operations are
tackled. Zhu and Basir’s scheme is shown to be the re-
sult of the discounting process applied to the maximal
de-discounted belief function. A property on the mass
given to the universe is presented, and a new general
transformation with more degrees of freedom is even-
tually introduced and justified.

2 Basic Concepts

2.1 Main definitions

Let x be a variable taking values in a finite set Ω =
{ω1, . . . , ωK}, called the frame of discernment. The
knowledge held by a rational agent Ag (the belief
holder) regarding the actual value ω0 taken by x, at
a time t, given an evidential corpus EC, can be quan-
tified by a basic belief assignment (BBA) mΩ

Ag,t[EC],
defined as a function from 2Ω to [0, 1] verifying:∑

A⊆Ω

mΩ
Ag,t[EC](A) = 1 . (1)

When there is no ambiguity, the full notation
mΩ

Ag,t[EC] will be simplified to mΩ
Ag, mΩ, or even m.

Note that in the TBM, BBAs are not required to be
normalized, i.e., we may have m(∅) > 0. The interpre-
tation of m(∅) is discussed in [8], and more recently in
an interesting review [13].

A BBA m is in one-to-one correspondence with a
belief function (BF) bel : 2Ω → [0, 1] and a plausibility
function pl : 2Ω → [0, 1] defined, respectively, as:

bel(A) =
∑

∅6=B⊆A

m(B), (2)

and
pl(A) =

∑
B∩A 6=∅

m(B), ∀A ⊆ Ω. (3)

Definition 1 (Focal elements) Subsets A of Ω such
that m(A) > 0 are called focal elements of m.

Definition 2 (Categorical BF) A categorical belief
function focused on a subset B of Ω is defined, such
that its related BBA mΩ

B satisfies:

mΩ
B(A) =

{
1 if A = B ,
0 otherwise. (4)

Note that, mB denotes a categorical belief function
focused on B, only if B is a subset of Ω; otherwise mAg

is a BBA provided by a belief holder Ag. In this paper,
belief holders can be noted by Ag (a rational agent) or
S (a source of information).

Definition 3 (Vacuous BF) The vacuous belief
function (VBF) is a categorical belief function focused
on Ω. It represents total ignorance.

Definition 4 (Bayesian BF) A Bayesian belief
function on Ω is a belief function on Ω such that its
focal elements are singletons of Ω.

Definition 5 (Commitment) A belief function with
related plausibility pl2 is said to be not more committed
(and less committed if there is at least one strict ine-
galities) than a belief function with related plausibility
pl1 if and only if:

pl1(A) ≤ pl2(A) ∀A ⊆ Ω. (5)

Definition 6 (Minimal Commitment Principle)
Among a set of belief functions in agreement with
available information, the principle of minimal com-
mitment consists in choosing the least committed belief
function.

This principle reflects a form of scepticism and the de-
sire to precisely model the available information with-
out introducing any unjustified pieces of information
[3, 5, 9]. It is at the origin of the vacuous and balloon-
ing extensions recalled below.

Combining two BBAs Two distinct and reliable
BBAs m1 and m2 can be combined using the conjunc-
tive rule of combination (CRC) defined by:

m1 ∩©m2(A) =
∑

B∩C=A

m1(B)m2(C), ∀A ⊆ Ω.

Marginalization and Vacuous Extension A
BBA defined on a product space Ω × Θ may be mar-
ginalized on Ω, by transferring each mass mΩ×Θ(B)
for B ⊆ Ω×Θ to its projection on Ω:

mΩ×Θ↓Ω(A) =
∑

{B⊆Ω×Θ | Proj(B↓Ω)=A}

mΩ×Θ(B) ,

∀A ⊆ Ω (6)

where Proj(B ↓ Ω) denotes the projection of B onto
Ω.

It is usually not possible to retrieve the original BBA
mΩ×Θ from its marginal mΩ×Θ↓Ω on Ω. However, the
least committed BBA such that its projection on Ω is
mΩ×Θ↓Ω may be computed. This defines the vacuous
extension of mΩ in the product space Ω×Θ [9], noted
mΩ↑Ω×Θ, given by:

mΩ↑Ω×Θ(B) =
{

mΩ(A) if B = A×Θ, A ⊆ Ω
0 otherwise.

(7)

Conditioning and Ballooning Extension Condi-
tional beliefs represent knowledge which is valid pro-
vided that an hypothesis is satisfied. Let m be a BBA,
B ⊆ Ω an hypothesis; the conditional belief function
m[B] is:

m[B] = m ∩©mB . (8)

If mΩ×Θ is defined on the product space Ω×Θ, and θ
is a subset of Θ, the conditional BBA mΩ[θ] is defined



by combining mΩ×Θ with mΘ↑Ω×Θ
θ , and marginalizing

the result on Ω:

mΩ[θ] =
(
mΩ×Θ ∩©mΘ↑Ω×Θ

θ

)↓Ω
(9)

Assume now that mΩ[θ] represents the agent’s be-
liefs on Ω conditionally on θ, i.e., in a context where θ
holds. There are usually many BBAs on Ω×Θ, whose
conditioning on θ yields mΩ[θ]. Among these, the least
committed one is the ballooning extension [9] defined
by:

mΩ[θ]⇑Ω×Θ(A× θ ∪ Ω× θ) = mΩ[θ](A), ∀A ⊆ Ω.
(10)

mΩ[θ]⇑Ω×Θ is also called a deconditioning of mΩ[θ] on
Ω×Θ.

2.2 Discounting

Let us assume that an agent Ag receives a BBA mΩ
S

from a source S, describing the source’s beliefs regard-
ing the actual value ω0. Moreover, Ag has some knowl-
edge about the reliability of S, quantified by a BBA
mR

Ag on the space R = {R,NR}, where R stands for
“the source is reliable”, and NR for “the source is not
reliable” [9]. Let us assume that mR

Ag has the following
form: {

mR
Ag({R}) = 1− α

mR
Ag(R) = α,

(11)

for some α ∈ [0, 1].
If S is reliable, the information provided by S be-

comes Ag’s knowledge:

mΩ
Ag[R] = mΩ

S , (12)

where the notation mΩ
Ag[R] is used in place of

mΩ
Ag[{R}] for simplicity; likewise for the rest of this

paper.
If S is not reliable, the information provided by S

cannot be taken into account, and Ag’s knowledge is
vacuous:

mΩ
Ag[NR](Ω) = 1. (13)

Therefore, we have two non-vacuous pieces of evi-
dence, mR

Ag and mΩ
Ag[R]. Assuming that they are dis-

tinct, they can be combined by vacuously extending
mR

Ag to Ω × R, computing the ballooning extension
of mΩ

Ag[R] in the same space, applying the CRC, and
marginalizing the result on Ω:

mΩ
Ag[m

Ω
S ,mR

Ag] =
(
mΩ

Ag[R]⇑Ω×R ∩©mR↑Ω×R
Ag

)↓Ω
.

(14)
The resulting BBA mΩ

Ag[m
Ω
S ,mR

Ag] (where the brackets
[ ] indicate the evidential corpus, i.e., what is known
by the belief holder Ag) only depends on mΩ

S and α.
Thus the discounted BBA mΩ

Ag[m
Ω
S ,mR

Ag] of a BBA
mΩ

S is often denoted by αmΩ
S . It is equal to{

αmΩ
S (A) = (1− α)mΩ

S (A), ∀A ⊂ Ω,
αmΩ

S (Ω) = (1− α)mΩ
S (Ω) + α,

(15)

which can be more simply written as:

αmΩ
S = (1− α)mΩ

S + α V BF. (16)

This operation was called discounting by Shafer [7,
page 251], who introduced it on intuitive grounds. The
formal justification presented here was proposed by
Smets [9]. A generalization has been presented in [6].

2.3 De-Discounting

In this process, an agent Ag receives a BBA αmΩ
S from

a source S, different from the VBF and discounted
with a discount rate α < 1. If Ag knows α, then it can
recompute mΩ

S by inversing the discounting operation
(16):

mΩ
Ag = mΩ

S =
αmΩ

S − α V BF

1− α
, (17)

that is,{
mΩ

Ag(A) =
αmΩ

S (A)
1−α ∀A ⊂ Ω,

mΩ
Ag(Ω) =

αmΩ
S (A)−α
1−α .

(18)

This procedure is called de-discounting by Denœux and
Smets in [2].

If α is not known, agent Ag can imagine all possi-
ble values in the range [0, αmΩ

S (Ω)]. Indeed, as shown
in [2], αmΩ

S (Ω) is the largest value for α such that
the de-discounting operation (18) leads to a BBA. De-
discounting αmS with this maximal value is called
maximal de-discounting. The result is the completely
reinforced belief function defined as follows.

Definition 7 (Completely reinforced BF) Let m
be a BBA different from the VBF. The completely re-
inforced BBA crm associated with m is defined by:

crm(A) =

{
m(A)

1−m(Ω) ∀A ⊂ Ω,

0 otherwise .
(19)

It corresponds to the BBA m such that the mass
m(Ω) is totally and uniformly redistributed on focals
elements of m. Denœux and Smets [2] has called this
crm the maximal de-discounted BBA as we explained.

Now that discounting and de-discounting are de-
fined, it would be interesting to build some correcting
mechanism allowing an agent to reinforce or weaken
any pieces of information provided by a source. Zhu
and Basir’s extended scheme constitutes a first step in
this direction.

2.4 Zhu and Basir’s Extended Scheme

In [14], Zhu and Basir have proposed to extend the
discounting process, in order to either augment or dis-
count belief functions. This was achieved by retaining
the discounting equation (16), and allowing the dis-
count rate α to be in the range [ −mΩ

S (Ω)

1−mΩ
S (Ω)

, 1]:

• If α ∈ [0, 1], αmΩ
S is clearly a discounting of mΩ

S ;

• If α ∈ [ −mΩ
S (Ω)

1−mΩ
S (Ω)

, 0], αmΩ
S is a de-discounting of

mΩ
S . Indeed, if α is replaced by −α′

1−α′ with α′ ∈



[0,mΩ
S (Ω)], (16) is equivalent to the de-discounting

equation (17):

αmΩ
S = (1− −α′

1−α′ )mΩ
S + −α′

1−α′ V BF

= mΩ
S−α′ V BF

1−α′ .
(20)

This extended scheme has been successfully applied
to a real-world application, but has not been formally
justified. A justification is presented in Section 4 of
this paper.

Before tackling general correction mechanisms, a
general reinforcement scheme, for which the de-
discounting process is shown to be a particular case,
is firstly exposed.

3 De-discounting as a Particular
Reinforcement Process

In this section, it is assumed that agent Ag receives a
non-vacuous BBA mΩ

S from a source S, describing the
source’s beliefs on the actual value of x. On the other
hand, Ag knows that the source is reliable and has
some knowledge on the cautiousness of S, quantified
by a BBA mC

Ag on the frame C = {TC,NTC}, where
TC stands for “the source is too cautious”, and NTC
for “the source is not too cautious”. Let us assume
that mC

Ag has the following form:{
mC

Ag({TC}) = 1− γ

mC
Ag({NTC}) = γ,

(21)

for some γ ∈ [0, 1].
With these hypotheses, Agent Ag has two pieces

of information: mΩ
S and mC

Ag. To compute mΩ
Ag, i.e.,

what finally agent Ag knows about the actual value of
x, the notion of cautiousness has to be defined:

• If S is too cautious, the BBA provided by S should
be completely reinforced:

mΩ
Ag[TC] = crmΩ

S . (22)

• If S is not too cautious, the information provided
by S become Ag’s knowledge without reinforce-
ment:

mΩ
Ag[NTC] = mΩ

S . (23)

Therefore, mΩ
Ag[m

Ω
S ,mC

Ag] depends only on three
non-vacuous pieces of evidence: mC

Ag, mΩ
Ag[TC] and

mΩ
Ag[NTC]. Assuming that they are distinct, mΩ

Ag can
be computed using the following equation, similar to
(14):

mΩ
Ag[m

Ω
S ,mC

Ag]

=
(
mΩ

Ag[TC]⇑Ω×C ∩©mΩ
Ag[NTC]⇑Ω×C ∩©mC↑Ω×C

Ag

)↓Ω
.

Proposition 1 We have:

mΩ
Ag = (1− γ) crmΩ

S + γ mΩ
S , (24)

and, by replacing crmΩ
S by its value:{

mΩ
Ag(A) = ( 1−γ

1−mΩ
S (Ω)

+ γ) mΩ
S (A) ∀A ⊂ Ω,

mΩ
Ag(Ω) = γ mΩ

S (Ω)
(25)

with γ ∈ [0, 1].

Proof: See Appendix A.1.
We note the similarity between (24) and (16). Fur-

thermore, by replacing γ ∈ [0, 1] by mΩ
S (Ω)−α

mΩ
S (Ω)(1−α)

with

α ∈ [0,mΩ
S (Ω)], it can easily be checked that (25) is

equivalent to de-discounting as defined by (18).
Actually, (24) defines a more general reinforcement

process as the choice of crm in (22) is somewhat ar-
bitrary. Agent Ag could choose any more committed
BBA than the original BBA given by the source. For
instance, crm in (22) could be replaced by the Bay-
sesian BBA mbet corresponding to the pignistic prob-
ability distribution [10]:

mbet({ω}) =
∑

{A⊆Ω,ω∈A}

mΩ
S (A)

(1−mΩ
S (∅))|A|

, ∀ω ∈ Ω.

(26)
Thus, de-discounting process can be considered as

a particular reinforcement process in which the com-
pletely reinforcement BBA is equal to the maximal
de-discounted BBA. The quantity 1 − γ indicates the
amount of reinforcement, and the pourcentage of the
mass on the universe which is distributed to focal ele-
ments.

In the next section, the definition of cautiousness is
extended, leading to a more general correction mecha-
nism and a justification of Zhu and Basir’s scheme.

4 Justification of Zhu and
Basir’s Scheme

Let us adopt the same starting point as the previous
section. Agent Ag receives a non-vacuous BBA mΩ

S

from a source S, and Ag has some knowledge about
the cautiousness of S, quantified by a BBA mC

Ag on
the frame C = {C,NC}. However, in this section, C
stands for “the source is (very) cautious”, and NC for
“the source is not cautious at all”, and the notion of
cautiousness is now defined as follows:

• If S is very cautious, the information provided by
S is maximally reinforced:

mΩ
Ag[C] = crmΩ

S . (27)

• If S is not cautious at all, the information pro-
vided by S cannot be taken into account, and Ag’s
knowledge is vacuous:

mΩ
Ag[NC](Ω) = 1. (28)

Let us assume that mC
Ag is defined, for some γ ∈

[0, 1], by: {
mC

Ag({C}) = 1− γ

mC
Ag(C) = γ .

(29)



Then, assuming that mC
Ag and mΩ

Ag[C] are distinct,
mΩ

Ag can be computed by:

mΩ
Ag[m

Ω
S ,mC

Ag] =
(
mΩ

Ag[C]⇑Ω×C ∩©mC↑Ω×C
Ag

)↓Ω
. (30)

Proposition 2 The resulting BBA mΩ
Ag is equal to

mΩ
Ag = (1− γ) crmΩ

S + γ V BF , (31)

or, equivalently,{
mΩ

Ag(A) = (1− γ) crmΩ
S (A) ∀A ⊂ Ω,

mΩ
Ag(Ω) = (1− γ) crmΩ

S (Ω) + γ

(32)
If crmΩ

S is replaced by its value in (32):{
mΩ

Ag(A) = 1−γ
1−mΩ

S (Ω)
mΩ

S (A) ∀A ⊂ Ω,

mΩ
Ag(Ω) = γ

(33)

with γ ∈ [0, 1].

Proof: mΩ
Ag corresponds to a discounting of crmΩ

S , as
C and NC plays the same role as R and NR in the
discounting justification scheme, and mΩ

S has been re-
placed by crmΩ

S in (27).

�

If γ = 0, mΩ
S is totally reinforced: mΩ

Ag(A) =
crmΩ

S (A), ∀A ⊆ Ω.
If γ = mΩ

S (Ω), mΩ
S remains unchanged: mΩ

Ag is
equivalent to mΩ

S .
If γ = 1, mΩ

S is totally discounted: mΩ
Ag(Ω) = 1.

It can be noticed that (33) is an other expression of
Zhu and Basir’s extended scheme recalled in Section
2.4. Indeed, by replacing γ ∈ [0, 1] by α(1−mΩ

S (Ω)) +
mΩ

S (Ω) in (33), we get:

mΩ
Ag(A) = (1− α(1−mΩ

S (Ω))−mΩ
S (Ω)) mΩ

S (A)

1−mΩ
S (Ω)

= (1− α) mΩ
S (A) ∀A ⊂ Ω,

mΩ
Ag(Ω) = α(1−mΩ

S (Ω)) + mΩ
S (Ω)

= α− α mΩ
S (Ω) + mΩ

S (Ω)
= (1− α)mΩ

S (Ω) + α

with α ∈ [ −mΩ
S (Ω)

1−mΩ
S (Ω)

, 1], which is exactly Zhu and Basir’s
extended scheme.

As this operation is a discounting, coefficient γ,
varying in [0, 1], can be automatically learnt from data
using the expert tuning method introduced in [4] for
instance. However, depending on mΩ

S (Ω), the same
γ can lead to a discounting, or a de-discounting or a
preservation of mΩ

S , as illustrated by the following ex-
ample.

Example 1 Let us assume that the following BBAs
come from the same sensor S and has been noted down
at different times i ∈ {1, 2, 3}. mS,1(A) = 0.1

mS,1(B) = 0.1
mS,1(Ω) = 0.8

 mS,2(A) = 0.2
mS,2(B) = 0.3
mS,2(Ω) = 0.5 mS,3(A) = 0.18

mS,3(B) = 0.72
mS,3(Ω) = 0.10

If γ = 0.5 is the rate used to correct this sensor,
then: mAg,1(A) = 5 (1− γ) mS,1(A) = 0.25

mAg,1(B) = 5 (1− γ) mS,1(B) = 0.25
mAg,1(Ω) = γ = 0.50

and, mAg,1 is a de-discounting of m1. mAg,2(A) = 2 (1− γ) mS,3(A) = 0.2
mAg,2(B) = 2 (1− γ) mS,3(B) = 0.3
mAg,2(Ω) = γ = 0.5

and, mAg,2 is equivalent to m2. mAg,3(A) = 10/9 (1− γ) mS,3(A) = 0.1
mAg,3(B) = 10/9 (1− γ) mS,3(B) = 0.4
mAg,3(Ω) = γ = 0.5

and, mAg,3 is a discounting of m3.

The next section presents an other process of cor-
rection with more flexibilities, in particular with the
control of the mass on the universe Ω.

5 A More General Correction
Mechanism

In this section, a rational agent Ag receives a non-
vacuous BBA mΩ

S from a source S, and has some
knowledge about the reliability and the cautiousness
of S quantified by a BBA mR

Ag on the space R com-
posed of three states {R1, R2, R3}.

If S is in state R1, it means that S is totally unre-
liable, the information provided by S cannot be taken
into account, and Ag’s knowledge is vacuous:

mΩ
Ag[R1](Ω) = 1. (34)

If S is in state R2, then S is reliable and cautious
enough, the information provided by S become Ag’s
knowledge:

mΩ
Ag[R2] = mΩ

S . (35)

If S is in state R3, it means that S is too cau-
tious, the information provided by S can be totally
reinforced:

mΩ
Ag[R3] = crmΩ

S . (36)

Let us assume that mR
Ag has the following form, with

γ1 + γ2 + γ3 = 1:
mR

Ag({R1}) = γ1,

mR
Ag({R2}) = γ2,

mR
Ag({R3}) = γ3.

(37)

Thus, the knowledge held by the agent Ag, know-
ing mΩ

S and mR
Ag, can be computed from the three

non-vacuous pieces of evidence, mR
Ag, mΩ

Ag[R2] and
mΩ

Ag[R3], by the following formula:

mΩ
Ag[m

Ω
S ,mR

Ag] =(
mΩ

Ag[R2]⇑Ω×R ∩©mΩ
Ag[R3]⇑Ω×R ∩©mR↑Ω×R

Ag

)↓Ω
.

(38)



Proposition 3 The resulting BBA mΩ
Ag only depends

on mΩ
S and γi, i ∈ {1, 2, 3}. We have

mΩ
Ag = γ1 V BF + γ2m

Ω
S + γ3

crmΩ
S . (39)

Equivalently,{
mΩ

Ag(A) = (γ2 + γ3
1−mΩ

S (Ω)
) mΩ

S (A) ∀A ⊂ Ω,

mΩ
Ag(Ω) = γ1 + γ2 mΩ

S (Ω) .

(40)

Proof: See Section A.2.
As γ1 + γ2 + γ3 = 1:

• if γ1 = 0, (40) is equivalent to (25), i.e., another
expression of the de-discounting process (18);

• if γ2 = 0, (40) is equivalent to (33), i.e., the Ω-
controled correction;

• if γ3 = 0, (40) is equivalent to the discounting
(15).

With this correction process, the mass that remains
on Ω is controled by γ1. However, one more degree of
freedom has been added as compared to the previous
correction process.

Example 2 Let us consider the same BBAs mS,i from
the previous example, and suppose that γ1 = 0.1, γ2 =
0.4, γ3 = 0.5 have been given by experts or learnt from
data. Then: mAg,1(A) = (γ2 + 5 γ3) mS,1(A) = 0.29

mAg,1(B) = (γ2 + 5 γ3) mS,1(B) = 0.29
mAg,1(Ω) = γ1 + γ2 mS,1(Ω) = 0.52

and, mAg,1 is a specialization of mS,1, i.e., the mass
provided by the source has been reinforced at this time. mAg,2(A) = (γ2 + 2 γ3) mS,2(A) = 0.28

mAg,2(B) = (γ2 + 2 γ3) mS,2(B) = 0.42
mAg,2(Ω) = γ1 + γ2 mS,2(Ω) = 0.30

and, at this time again, mS,2 has been reinforced. mAg,3(A) = (γ2 + 10/9 γ3) mS,3(A) = 0.172
mAg,3(B) = (γ2 + 10/9 γ3) mS,3(B) = 0.688
mAg,3(Ω) = γ1 + γ2 mS,3(Ω) = 0.140

and, this time, the mass provided by the source has
been adjusted by a weakening.

Remark 1 If mR
Ag has the following form:

mR
Ag({R1}) = γ1,

mR
Ag({R2}) = γ2,

mR
Ag({R3}) = γ3,

mR
Ag(R) = 1− γ1 − γ2 − γ3,

(41)

with γ1 + γ2 + γ3 ≤ 1, then mΩ
Ag is equal to:{

mΩ
Ag(A) = (γ2 + γ3

1−mΩ
S (Ω)

) mΩ
S (A) ∀A ⊂ Ω,

mΩ
Ag(Ω) = 1− γ3 − γ2(1−mΩ

S (Ω)) .

(42)

6 Conclusions

In this paper, some results have been presented con-
cerning the de-discounting process, as well as several
correction mechanisms, i.e., mechanisms for weakening
or reinforcing belief functions.

A general reinforcement scheme has been firstly ex-
posed. This scheme is based on the choice of a spe-
cialization operator, which is applied to the BBA pro-
vided by a source, when this source is considered to be
too cautious. The de-discounting process is recovered
where the specialization is chosen to be the completely
reinforced BBA.

Concerning the general correction mechanisms, Zhu
and Basir’s extended scheme related to de-discounting
and discounting processes has been justified: it corre-
sponds to the discounting of the completely reinforced
BBA, with a reparameterization. An even more gen-
eral correction mechanism, with one additional degree
of freedom, has also been defined.

As a perspective, the correction (reinforcement or
weakening) performed by an agent may depend not
only on the source, but also on the context, i.e., the
true value of the variable of interest. Thus, in line
with previous work by the authors on contextual dis-
counting [6], a contextual correction mechanism could
be designed and investigated.

A Proofs

A.1 Proof of Proposition 1

With the hypotheses of Section 3:{
mC↑Ω×C

Ag (Ω× {TC}) = 1− γ,

mC↑Ω×C
Ag (Ω× {NTC}) = γ.

(43)

for all A ⊆ Ω:

mΩ
Ag[TC]⇑Ω×C(A× {TC} ∪ Ω× {NTC}) = crmΩ

S (A),
(44)

and, for all B ⊆ Ω:

mΩ
Ag[NTC]⇑Ω×C(B × {NTC} ∪ Ω× {TC}) = mΩ

S (B).
(45)

Moreover, for all A ⊆ Ω and B ⊆ Ω:

(A× {TC} ∪ Ω× {NTC})
∩(B × {NTC} ∪ Ω× {TC})

= A× {TC} ∪B × {NTC}, (46)

and

(A× {TC} ∪B × {NTC}) ∩ Ω× {TC}
= A× TC , (47)

(A× {TC} ∪B × {NTC}) ∩ Ω× {NTC}
= B ×NTC . (48)

Thus, the combination mΩ
Ag[TC]⇑Ω×C ∩©

mΩ
Ag[NTC]⇑Ω×C ∩© mC↑Ω×C

Ag , noted ∩©mΩ×C
Ag , has



two forms of focals elements, for all A,B ⊆ Ω:

∩©mΩ×C
Ag (A× {TC})

= (1− γ) crmΩ
S (A)

∑
B⊆Ω

mΩ
S (B)︸ ︷︷ ︸

=1

, (49)

∩©mΩ×C
Ag (B × {NTC})

= γ mΩ
S (B)

∑
A⊆Ω

crmΩ
S (A)︸ ︷︷ ︸

=1

. (50)

By simplifying, it remains two forms of focals elements,
defined for all A ⊆ Ω by:

∩©mΩ×C
Ag (A× {TC}) = (1− γ) crmΩ

S (A),

∩©mΩ×C
Ag (A× {NTC}) = γ mΩ

S (A).

Marginalizing this BBA on Ω finally gives:

mΩ
Ag(A) = (1−γ) crmΩ

S (A)+γ mΩ
S (A), ∀A ⊆ Ω. (51)

�

A.2 Proof of Proposition 3

With the hypotheses of Section 5:
mR↑Ω×R

Ag (Ω× {R1}) = γ1 ,

mR↑Ω×R
Ag (Ω× {R2}) = γ2 ,

mR↑Ω×R
Ag (Ω× {R3}) = γ3 .

(52)

For all A ⊆ Ω:

mΩ
Ag[R2]⇑Ω×R(A× {R2} ∪ Ω× {R1, R3}) = mΩ

S (A).
(53)

For all B ⊆ Ω:

mΩ
Ag[R3]⇑Ω×R(B × {R3} ∪ Ω× {R1, R2}) = crmΩ

S (B).
(54)

Moreover, for all A ⊆ Ω and B ⊆ Ω:

(A× {R2} ∪ Ω× {R1, R3})
∩ (B × {R3} ∪ Ω× {R1, R2})
= A× {R2} ∪B × {R3} ∪ Ω× {R1}, (55)

and

(A× {R2} ∪B × {R3} ∪ Ω× {R1}) ∩ (Ω× {R1})
= Ω× {R1},

(A× {R2} ∪B × {R3} ∪ Ω× {R1}) ∩ (Ω× {R2})
= A× {R2},

(A× {R2} ∪B × {R3} ∪ Ω× {R1}) ∩ (Ω× {R3})
= B × {R3}.

Then the combination mΩ
Ag[R2]⇑Ω×R ∩© mΩ

Ag[R3]⇑Ω×R

∩© mR↑Ω×R
Ag , noted ∩©mΩ×R

Ag , has three forms of focals

elements, for all A,B ⊆ Ω:

∩©mΩ×R
Ag (Ω× {R1})

= γ1

∑
A⊆Ω

mΩ
S (A)

∑
B⊆Ω

crmΩ
S (B), (56)

∩©mΩ×R
Ag (A× {R2})

= γ2 mΩ
S (A)

∑
B⊆Ω

crmΩ
S (B), (57)

∩©mΩ×R
Ag (B × {R3})

= γ3
crmΩ

S (B)
∑
A⊆Ω

mΩ
S (A), (58)

or, equivalently, for all A ⊆ Ω:

∩©mΩ×R
Ag (Ω× {R1}) = γ1,

∩©mΩ×R
Ag (A× {R2}) = γ2 mΩ

S (A),

∩©mΩ×R
Ag (A× {R3}) = γ3

crmΩ
S (A).

Therefore, after marginalizing this BBA on Ω, one has:{
mΩ

Ag(A) = γ2 mΩ
S (A) + γ3

crmΩ
S (A) ∀A ⊂ Ω,

mΩ
Ag(Ω) = γ1 + γ2 mΩ

S (Ω) + γ3
crmΩ

S (Ω) else.

And, by replacing crmΩ
S by its value, (40) is retrieved.

�
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