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Abstract—In this paper, we are interested in the fusion of sifiers providing decisions which are organized as a hiagarc
classifiers providing decisions which are organized in a hierarchy, decisions can be expressed at different levels. For eampat

i.e., for each pattern to classify, each classiﬁer has _the possibility to classify, each classifier has the possibility to chootfeeei
to choose a class, a set of classes, or a reject option. | ' t of cl acti
We present a method to combine these decisions based or? €1ass, Or a set of classes, or rejection.

the Transferable Belief Model (TBM), an interpretation of the
Dempster-Shafer theory of evidence. The TBM is shown t0  \\e assume that the decisions are not associated with any

provide a powerful and flexible framework, well suited to this - . e .
problem. Special emphasis is put on the construction of basic be- scoring vector, or posterior probabilities. It is a common

lief assignments, an important issue which has not yet been fully Situation in real world applications.
explored in the literature. We propose an approach extending

a former proposal made by Xu, Krzyzak and Suen (1992) in a  cyassifiers providing only class labels are callglbstract
simpler context. A rational decision modelling allowing different

levels of decision is also presented. level classi_fi_ersor cla_ssifiers of _Typ_e in [3]. .To combine
Finally, the proposed combination is compared experimentally Such classifiers, various combination techniques were pro-
to several simpler alternatives. posed such as voting-based systems [3], [4], [5], plurality
[6], Bayesian theory [3], Dempster-Shafer theory [3], [¥] 0

Index Terms— Decision Fusion, multi-level decisions, belief classifier local accuracy [8].

functions, Dempster-Shafer theory, Evidence theory, classifie
tion.
Inspired by a former proposal by Xu, Krzyzak and Suen
|. INTRODUCTION (1992) [3], a combination of these decisions based on the
Building highly reliable classifiers is an important objeet Transferable Belief Model (TBM) ([9], [10]) is proposed Kei
in pattern recognition. An interesting way to achieve thoglg all Dempster-Shafer approaches, the assignment of masses |
consists in the combination of already existing classifiergn important task which often determines the success of the
Indeed, experimental results ([1], [2]) show that methoatsgdl  combination. Therefore, different assignments are dgsasalisA
on multiple classifiers generally outperform each indiaidu decision process allowing different levels of decision lsoa
classifier. As explained by Xu, Krzyzak and Suen in [3], theresented.
combination of multiple classifiers includes several peot:
selecting the classifiers to combine (types, algorithms)lver,  This paper is organized as follows. The key points of
...), choosing an architecture for the combination (pefall the TBM, an interpretation of the Dempster-Shafer theory of
cascade, mixtures of both, ...), and combining the classifigvidence [11] well suited to information fusion, are reedlin
outputs in order to achieve better performance than eagBction II. In Section Ill, we come back to an existing method
classifier individually. for combining belief functions in the case of non hierarahic
In this papet, we focus on the problem of combining clasdecisions. Then, in Section IV, a model based on the TBM is
T . , , presented for the combination of multi-level decisionsialy,
This work is the result of a cooperation agreement betweehiéheliasyc . . .
laboratory at the Univergitde Technologie de Conggine and the SOLYSTIC Section V describes eXpe”memal results and compares the
company. proposed combination with voting-based schemes.



[l. THE TRANSFERABLEBELIEF MODEL (TBM): Therefore, when a decision has to be made, the BBA

FOUNDATIONS obtained after the combination must be transformed into a

A. Information representation probability measure. One solution proposed in [14] coasist
in using thepignistic transformation[15], [16] to compute

Let X be a variable taking values in a finite $&tcalled the the pignistic probability

frame of discernmenfor framée). 2 is composed of mutually

exclusive elementsy, ..., wk calledatoms The knowledge m(A)

held by a rational agent, regarding the actual value, taken BetP({w}) = Z |A| (1—m(0)) )

by X, can be quantified by a belief function defined from the {actwea}

power set2® to [0, 1]. Most of the time, classification algorithms do not directly
Belief functions can be expressed in several forms: tl@mpute a BBA. Thus, to apply the TBM or any model based

basic belief assignment (BBA), the credibility function on the Dempster-Shafer theory, each classifier's outputdas

bel and theplausibility functionpl, which are in one-to-one be converted in the form of a BBA. This task is very important

correspondance. We recall that(4) quantifies thepart of as each BBA is supposed to represent all the knowledge

belief that is restricted to the propositiam, € A C Q and provided by a classifier. In particular, BBAs should reflect

satisfies: each classifier's strenghs and weaknesses. The followittg se
Z m(A4) =1. (1) tion aims at representing the information produced by each
ACQ classifier through the best possible BBA.

Thus, a BBA can support a set C Q without supporting

" . h I11. M ASS ASSIGNMENT THROUGH THETBM
any subproposition ofi, which allows to account for partial

knowledge. In this paper, decisions are assumed to be the only pieces
Some particular belief functions often used, are defined @kinformation available on each individual classifier. larp
follows: ticular, we will not use the feature vector of patternused
Definition 1: The vacuous belief functiomuantifies total in others approaches [7], [17]. The BBAs representing the
ignorance: knowledge on each classifier can be built from the decisions
mQ(Q) =1. already proposed in a learning set. For this task, confusion

. . . . ., matrices will be used. First, some definitions are given.
Bayesian belief functionguantify perfect knowledge oX's

value: A. Definitions

Q —
m(4) # 0= [A] = 1. LetC = {C,...,Cn} be a set ofN classifiers, and let
B. Handling the knowledge QO ={wy,...,wx} be a set ofK class labels.

Two distinct pieces of evidence, quantified by BBASg In this section, a classifier is viewed as a funct@naking
andm,, may be combined, using a suitable operator. The m@ input a pattern: from a set of pattern® and outputting a
common are the&onjunctive rule of combinatiofCRC) and class labelC(z) = wy € QU {wk1}, where by convention
the disjunctive rule of combinatiofDRC), defined, respec- wx+1 denotes the rejection class.

tively, as: Definition 2: The  confusion matrix ~ M; =
Ny ) {kefl,... K+1} 1e{1,.... k) (Table 1) of classifier C;,
my @may(A) = Y my(B)my(C),VA C ((:o]%)guteé{d' fro?n}tees{t dat;]: allows to sum up the correct
BNC=A answers and the errors of classifér for each class;. Each
m; @mpy(A) = Z m, (B) my(C),VA C Q. row k corresponds to the decisidr} () = wy. Each column
BUC=A | corresponds to the actual class. n}, is the number of
If the two distinct pieces of evidence are trustful enouge, t Patterns of actual clasg which have been classified Igy; in
CRC is used. Otherwise, if at least one piece of evidenced@sswi. For allk € {1,..., K + 1}, letni, = Y/, ni, be
reliable, the DRC can be used. the number of patterns classified B¥ in w,. For example,
. . nt _is the number of rejections made by classif@&r.
C. Decision making (K+1) Kl K
Let n* = >, >, nj, be the total number of patterns

When an agent has to select an optimal action amop@ ssified byCz.

an exhaustive set of actionstionality principles[12], [13]  pefinition 3 (performance rates)The performance of each
justify the strategy that consists in choosing the one thahgifierc, will be measured by theecognition rate(correct
minimizes theexpected riskor expected CopLThis principle  5q\er rate), theerror rate (or substitution raty and the

i o0 .
leads to the use of a probability measite : 2 — [0; 1] and rejection ratenoted, respectivelyR;, S; andT;. Performance
a cost functiorr: Ax € — R, whereA is the set of possible a5 of classifiet’; are computed from its confusion matrix:
actions. The optimal action is then the one that minimizes th . o

« therecognition rateof classifierC;

expected cost (risk) defined by:
K i
pla) = 3 ela,w) P({}). @ Ry — =L @

i
weN n
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. the rejection rateof classifier(; Fig. 1. Representation of the performances of classifiers.

T — nZ(KJrl)' (6) . . . . .
T Assignment (8) is calledBayesian assignmerss it leads
to Bayesian BBAs. With such an assignment, even a rejection

Thusvi € {l,...,N}, Ri+ S+ Ti=1. brings information on the actual class (it does not lead to
Another rate, allowing to measure the reliability of a clas-

P ) o . . _“Ta vacuous BBA). However, for the ratiosi,/ni to be
sifier without regarding the rejection rate, is defined by: statistically significant, the learning set must be well

R - Zle o R ; and large enough. In particular, when the number of classes i
i = ZK ZK ni 1-T @) high, it is generally not possible to exploit the whole ccsifun
k=1 £l=1 Tk matrix. In this case, it is preferable to group sonje and to
and is called theeliability rate of classifierC;. build less precise BBAs.
Definition 4 (classifiers comparisonOne classifierC; is 2) Xu's assignment:When Cj(z) = w, With k €
said tooutperformanother classifie€; if and only if : {1,...,K}, it is proposed in [3] to definen; by:
e (; has a better recognition rate thay and a lower 0
substitution rateR; > R, and S; < ;. m; : 2 — [0,1]
e Or, C; has a better recognition rate théh with the same {wr}  — R 9)
substitution rateR; > R; and S; = ;. Q\{wg} — S
e Or, C; has a lower substitution rate thaf) with the same Q — 1
recognition rates; < S; and R; = R;. When C;(z) = wi 11, m;(Q) = 1 which means: wher;
This relation defines a partial order. makes a rejection, assignment (9) leads to the vacuoud belie

The performances of each classifier can be represented ifu@ction.
graph with the recognition rate on theaxis and the error rate  This assignment is based on the following idea: the higher
on they-axes. This graph allows to visualize in a simple washe recognition rate, the greater the confidence on theifitass
which classifier has the best performance and which classifidecision. This assignment was tested in [3] on a digit recogn
are not comparable. tion problem and provided good results. However, as shown by
Example 1:Figure 1 represents the performances of 4 clathe following example, the confidence in the classifier denis
sifiersC1, Cy, C3 andCy. ClassifierC, outperforms all others. should not depend only on the recognition rate.
ClassifiersC; and C3 are not comparable. Example 2:Let us consider two classifiers; and Cs with

: o . . the followin rformance rates:
B. Mass assignment for the combination of non-hierarchical . 'O O'"d Periormance rates

decisions R; S; T;
1) Bayesian assignmenfThe confusion matrix allows to Gy 90% 1% 9%
take into account each classifier's performance with respec Cy 20% 0.1% 79,9%
to each class. Whe;(z) = wy, the Bayesian BBAm; [et us assume thaf(z) = w, and Cs(z) = w;, assignment
representing information coming from classifi€f, supports (9) yields mi({wp}) = 0.9 and ma({w;}) = 0.2. This

eachw, € Q with a mass equal to the ratio of number ofssignment is not what could be expected since classifjsr
patterns in class; which have been classified lfy; in class decisions, when different from a rejection, are correct tmos
wy, to the total number of patterns classified 6y in class of the time. In factC, is a very cautious classifier which
W ; ; makes_many reje.ctions to havg a minimum of errors. Thus,
Yw; € Q, m;({w}) = ;‘# - @ (8) as deC|S|_ops coming from classifi€f are more reliable than
dim1 My ke C4's decisions;ms({w;}) should be higher tham; ({ws}).



3) Reliability Assignment:Example 2 shows what can?P, either a class or a set of classes, according to a hierafchy o
happen when the behaviors of two classifiers are differemt. © = {w1,...,wk }. This hierarchy is assumed to be common
overcome this problem, we propose to use rfl@bility rate to all the classifiers. For the sake of simplicity, only three
R;: (7) of classifierC;. Indeed,R; represents the percentagdevels in the hierarchy are considered, but our approachdcou
of “good” classification knowing”; has decided a class labelbe easily extended to more levels.
different from a rejection. WherC;(z) = w; with & € As classifiers can now select a set of classes, the rejection
{1,..., K}, we propose the assignment: class is equivalent to a decision for the whole univefse
Consequently, rejection will from now on be notégx) = Q,

m; 2% — [0,1] .
instead ofC;(z) = wx1 as before.

e} — R (10) Example 3:Let us consider sensors that recognize flyin
Q — U, - p : g ying

v objects inQ) = {A1, Ay, Hy, Ha, Ry, Ro, R3} of three types:

wherel; is the unreliability rate of the classifierC;: airplanesA = {A4;, A}, helicoptersH = {H;, H,}, and

R; S; rocketsR = {R1, R, R3}.

Ui=1-Ri=1l-7—F=7""7: (11)  According to the difficulty of the recognition task, each

sensor can either recognize an object (an elemerf)obr

When.C,; makes a rejelctiorEli(Q) = 1 like ass:]gnm?ntb_(lg). i\ type of object 4, H, or R). In case of high uncertainty it
hAsTlgnrpent (1hO) on yl ta es |r;1to account the reliability of 5 "5150 select the reject option, which amounts to choosing
the classifiers when a class is chosen. the whole universe).

This assignment is a particular case of a more generalrye corresponding hierarchical decision space is depicted

assignment that will be defined in the following section tg, Figure 2

represent information coming from classifiers when denisio

are organized in a hierarchy. ®q Q

Remark 1: Assignment (10) corresponds to the least com-

mitted mass [18] in agreement with the incomplete plaugjbil / ‘

function : @q A H R
p,({we}) = 1
pli(A) = U;, VA st w, & A. /\ / \ / \

Before having information coming from classifier;, all Yo Ay A} H) MY RY R RY

propositions are totally plausible. Then, when classifigr
outputs a classuy, the proposition "the actual class is,”
remains entirely plausible, but each set which does not con-1), is the set of decisions of level LA (A}, {H)
tain w;, becomes less plausible depending on the CIaSSiﬁ{eﬁg},{Rl},{RQ},{Rg}}. ’ ' ’

reliability. , , . (DQqis the set of decisions of level ZA, H, R} with A =
A variant of the previous assignment consists in building A4, A,), H = {Hy, Hs), andR = {Ry, Ro, R).

more committed assignment: (3)Q is the set of decisions of level 39}.

Fig. 2. A hierarchy of classifiers of example 3.

m. - o9 N [0, 1] The problem is then to fuse several decisions expressed at
c {w) L 7’3 (12) different levels in the hierarchy. This problem is referecat
0\ {kwk} - R,l: U combination of multi-level decisiorend noted CMLD.

Example 4 (continuation of Example 3)et us have 4
Assignment (12) corresponds to the least committed maggssifiersC, C», C5, andCy. Knowing:

in agreement with the incomplete plausibility function « C) outputs % is an airplane of model 1€, (z) = {4},
pL({w}) = Ri o C5 outputs % is an airplane”:Cy(z) = A = {A1, A3}
pl,(A) = U, VA s.t. wy € A. (i.e. z is an airplane of any model),

o (3 outputs % is a rocket:Cs(z) = {Ry, R, R3} (i.e.
x is a rocket of any model),
C, make a rejection “I don’t know the type af”
Cs(x) = Q (i.e. z is a flying object of any types).
bY(\a/hat decision at which level should be undertaken by the
combination of these classifiers?

We propose to model each classifier ouput by a belief func-
IV. A MODEL FOR THE COMBINATION OF MULTI-LEVEL tion computed from a confusion matrix, using a generalizati

DECISIONS(CMLD) IN THE TBM of Assignment (10) introduced in Section III.

A. Problem formalization B. Mass assignment for the CMLD

From now on, we consider a set of classifiersC;, i € The proposed assignment is based on the use of reliability
{1,..., N}, selecting for each patternfrom a set of patterns rates at each decision level.

Unlike Assignment (10), the classifier reliability here afl
ences the degree of belief ifws}, too. If the classifier is
unreliable, we are tempted to think the answer is not the®
classifier decision. This assignment brings more conflizas t
the first one, that's why we choose to generalize the flexi
Assignment (10) in the following section.



Let u be a function assigning to each class or set of classesConsequently, when classifi€l; outputs a decision at level
(other thanQ) the set of classes just above in the hierarchy, C;(z) = {w} € (VQ, the assignmenty; is defined by:
For instance, in Example 3,({A:}) = A, u(4) = Q. Let us

L. Q
denote the elements at each level as indicated in Figure 3. i 2 - [0’11)}
Ci(z) +— RMQ a7
u(Ci(x)) — U]
®g (3)(,01 =Q 0 s U2 [(1)9} ]
/ ‘ \ When classifierC; outputs a set of classes different from
Q, C;(x) is a decision of level?Q, the assignment is the
@q @, @ @, following:
/ \ /\ / ‘ \ m; @ 2% —  [0,1]
Ci(z) — Ri[?Q] (18)
®a (1)(*)1 (1)(*)2 (1)0)3 (l)‘*)4 (l)ws (l)(‘)e (l)w7 Q — U 2[(2)9]

If classifier C; makes a rejection them,; is the vacuous
belief function.
Let wy denote the actual value of the precise class of patte nExampIe > (Qontlnueq from Example ;i)et us assume
that the confusion matrix of classifigr; is the one shown
in Figure 4.

Fig. 3. Notation for a hierarchy.

xX.
Assume that classifie€’; outputs a decision other than
rejection. This decision is at a levglof the hierarchy =1

or p =2 andC;(x) € P)Q). Consider the following cases: B (¢ L CF: | A—
1 2 1 2 1 2 3
1) The actual valueyy of z is in C;(x). C;(x) is then the %21% 326 244 ! g g é é i
correct answer. The percentage of good recognition {Hf} T 0 T 5T o 0 0
level p is notedR;[(P)Q): e {H>} 0 0 i 1 21 1 0 0 0|
¢ {R1} 0 0 0 0 30277
o {R2} 1 0 0 0 2 15 8
kff Zw (p)nzl {R3} 1 0 0 0 0 2 15
R(PQ = = 1€ MW (13) . fA,Ao) 1 35 45 ¢ 2 L4 510
(P)pi ’ @ q | {H, Ha} 0 04277730 0 .0 1|
{Ri1, R2, R3} 2 4 0 0 25 12 21
. . @)
where (P K is the number of decisions at level In i B 2 > ! 0 L 2 10
particular VK = K, @K is the number of set of
classes at leve. (P)nt is the number of patterns of Fig. 4. Confusion matrix of classifief; .

actual classy; which have been classified lay; in class

Py, Ppi = :’;f K ®ni is the total number ~ For instance, the number of patterns of actual class
of patterns classified by); at levelp. which have been classified by; in class of level 1{A;}

2) C;(x) contains only one clas<’{(x) is a decision of is equal t036. The number of patterns of actual clags
level 1) andwy is in u(C;i(x)) \ C;(z) with w(C;(x)) c  which have been classified Iy, in class of level 2{A;, Az}
Q; this means that the class selected by the classifigrequal to35. And, the number of patterns of actual class
is not correct but is in the right set of classes. Fowrhich have been classified by, in Q is equal to2, which
instance, the sensor has decided the wrong model rogans that classifief; rejected2 patterns from classl, .
airplane but the flying object was actually an airplane. Assume that classifigr; outputs a decision of level 1 in the

The percentage of these errors, considered as errorshigirarchy (Figure 2), withCy (z) = {A4;} €V Q. We have:
i 11(1)
type 1, is noted/; [/, R[] = (364244 19+ 21 430 + 15 + 15)/200

ZK Z (1)nz = 0.80
Ulq) = ==t sz(qgc:;)%l#k Moo@a) U] = (244414542424 2+4+8)/200
= 0.15
3) The true classy is in @\ Cy(z) if Ci(z) is a set of UT[M] = (1+1+141+2+4)/200
classes, or if2\ u(C;(x)) if C;(z) is a decision of level = 005
1, which means that the actual valueofs not in the (19)
set of classes containing the output of the classifier. THEEN: my (A1) _ 080
percentage of these errors considered as errors of type ml({Al As}) _ 0'15
2 is noted/?[(P)Q): P
i m; ({Q}) = 0.05

This use of the performances of classifiers to assign the
2] = 1—R,[DQ — D - i

UZQ[(Q)Q} 1 R’[(Q)Q] u;1ql, - (15) mass is close to the approach in [8], where the purpose was
U0 = 1-R[7Q] (16) to estimate the local class accuracy of each classifier. The



percentage of patternscorrectly assigned whef;(z) = wy, contained in this set of classes, it will be callegracise
indicates the strengh of the belief in the fact that the class class rejection cosand notedCr, .. Otherwise, this is
of z is actuallyw,. We generalize this approach to the case the price to pay for having committed an error of set of
of a hierarchical decision space. However, in [8], the denis classes, it will be called general class error cosand
with the maximum local class accuracy is selected, whereas notedCg,..

in our model all the BBAs coming from each classifier are « Vw;, € Q, c(w;,wy) represents the cost to decide class

combined. w; knowing that the actual class is;. If w; = wy, this
Remark 2 (No set of classes)vith no decision composed is the price to pay for having the good answer and this
of sets of classes, the hierarchy contains two levél§), = price is the lowest, so it assumed to be null. Otherwise,
{Q} andMQ, = Q, if C(z) is not a rejection (therd(z) = this is the price to pay for having committed an error of
{wr}, k €{1,...,K}), the assignment is the following: class, it will be called @recise class error cosind noted
m: 22 — [0,1] Cepe- ) ) .
Clz) — R[DQ (20) The following ordering between theses costs is assumed:
Q  — 1-R[MQ] 0 < Chie < Choe < Chpe < Choe- (23)
assignment is the same as (10). Core < Chocr Chre < Cipos Chge < Chger aNdCrpq <
C. Combining the BBAs CEgqco- In this paper, the assumptidix., ., < Cg, iS made, in

. . . . . accordance with the application of the last section. Howeve
Assuming that the classifiers constitute distinct reliablgg assumption is problem-dependent, in another apjdicat

pieces of evidence, the BBAs can be combined conjunctively.c, pe false. The main idea consists in choosing the right
Example 6 (Example 3 continuation):et us consider .o« according to the problem to be solved.

these results after the assignment: The risk associated with actidd is Cr,,.., indeed:
ml({Al}) = 08 mg({Al,AQ}) = 07

m ({4, 4)) = 015 my({Q)) ~ 03 P = ) el wn)BetP({wy})
my ({€2}) = 0.05 wrED
= Crec » BetP({w})
m3({R1,R2,R3}) = 0.6 T)’M({Q}) = 1 wi €42
my({Q}) = 04 = Croe-
Then, withm = m; @ ms @ m3 @ my: Example 7 (Continued from Example Jrom (21) and
m({A,}) — 0320 m({Ry,Rs,R3}) = 0.009 (3), the pignistic probability is computed:
m({A;,42}) = 0.074 m({Q}) = 0.006 BetP({A;}) = 08750 BetP({R:}) = 0.0094
m({0}) = 0.591 BetP({A5}) = 0.0926 BetP({Ry}) = 0.0094
(1) BetP({H,}) = 0.0021 BetP({Rs}) = 0.0094
D. Rational multi-level decision BetP({H2}) = 0.0021 (24)
When a decision has to be made, the combination of muitfen:
levels decisions (CMLD) has to compute an optimal action
among a set of actiond. In our problem, the set of possible p(A1) = D c(Ar,w)BetP({w})
actions is: wes
A= g U @ u W (22) = CppcBetP({A2})
where ‘decidew,” is identified to “{w;}", and “decide Q" +Croe D, BetP({w}). (25)

means rejection. weN\A

The optimal action is computed according to the following\s BetP({A1}) > BetP({w}), Vw € Q\ {41} (24) and
costs: Cepe < Crg. (23), we can show that for alh € Q\ {A;}:
e Vk € [1,K], ¢(2,wy) represents the cost to decide
(i.e. rejection) knowing that the actual classuig. This pA) < p(w) (26)
is the price to pay for total rejection, it will be calledwhich means that if a decison of level 1 must be made, the
total rejection costor general class rejection cosind decision will be A;. However possible actions are alsbo—=

notedCr - {A1, A2}, H = {Hy, Hy}, R = {Ry, Ry, R3} and (.
o Vk € [1,K] VI € [1,L], ¢(Pwy,wy,) represents the cost

to decide a set of classé¥w, knowing that the actual p(A) = Cprpc(BetP({A1}) + BetP({A2}))

class iswy. If wy, € Puwy, this is the price to pay for the +Chue Z BetP({w}).

decision of a set of classes instead of the precise class weN\A



p(H) = Crp.(BetP({H1})+ BetP({H2})) B. Performance measures

+Ceee Z BetP({w}). Since classifiers produce decisions at different levels; ne
wEN\H definitions of recognition rates and error rates have to be in
troduced. The performances of each individual and combined

classifier will be measured by recognition and substitution

p(R) = Crpe »_ BetP({w}) (error) rates at two levels.
wER The recognition rateof classifierC; at level 1, noted? R;,
+Cp Z BetP({w}). is defined as the ratio of the number of good recognition at
b iR level 1, to the total numbe of classified patterns:
. . ZK (1) i
Likewise by (24) and (23)dr,. < Crueo), p(A) < p(R), VR, = =k=1 Tkk (28)
and p(A) < p(H). As already seerp(2) = Cr,.. At last, n
the value of costs will decide which action at which levellwilThe substitution rateof classifierC; at level 1, noted)S;,
be undertaken. With (24): is defined as the proportion of misclassifications at level 1,
plus the proportion of misclassifications at level 2 (i.ee th
p(A1) = 0.0926 Cg,. + 0.0324 Cg,,. proportion of decisions at level 2 which do not contain the
p(A) = 0.9676 Cr,. +0.0324 Cpg,. actual class):
— K K i
p) = Croc- @) g - D ket D1tk Wnj,y
Thus with 0.0926C,... < 0.9676Cx,. and 0.0926Cx,. + B o
0.0324Cg., < Crye, i.€. with a low error cost or a high 4 k=l Dl Lu(w) £y Tl (29)
rejection cost, the decision will be made at level 1. Othseyi n '

if the error cost is high and the rejection cost is low, a denis ¢ recognition rateof classifierC; at level 2, noted? R;

of level 2 or 3 will be made. _is defined the proportion of decisions at level 1 which are

Ideally, these costs are provided by experts of the corsitiefnc|yded in the same set of classes of the actual classpius t
application, and reflect financial costs. They can also beleaproportions of decisions at level 2 which contain the actual
from training data to obtain an expected behaviour of thggss:

CMLD.

K K 1),
(Q)RZ Zk:l Zl:l;u(wl):u(wk) ( )nkl

V. APPLICATION

n
PR K ()i
k=1 Zl:l;u(wl):@)wk Ny

n

In this application, three classifiers;, C», and C; are + (30)
available. They are considered as black boxes which provide . . . .
hard decisions in a hierarchical decision space. The aimia;)ftEaCh decision at Igvel 1 IS thus congdered as a (jeC|S|on
section is to compare the performances of CMLD with thod¥ the upper level in the hierarchy. Finally, tsebstitution

of two different voting schemes, for a particular applioati rate of _classmerq .at level 2, noted?'s;, is defined as the
proportion of decisions at level 1 whose set of classes above

in the hierarchy does not contain the actual class, added to
the proportion of decisions at level 2 which do not contain

When all classifiers have relatively good performances affie actual class:

A. Voting schemes

express their decisions on the same frame of discernment, foﬂ Elfil' () )(1)”?}1

majority voting is a good candidate [5]. In this application @g; — -

only three classifier€',, C> andC'; are available and classifier DK K " @4

Cy is known to have the best performances. Thus a good n k=1 Zl:l;u(wl);&@)wk Mgy 31)
voting based strategy consists in selecting the decisichef n '

best classifier unless the other two models agree. In thaf caf this application, the costs were learnt from a learning
the Outpu'[ of the two other classifiers is chosen. This methggt Containing half of the data, in order to achieve the best

will be calledMajC5. In order to achieve a better recognitionecognition rate while maintaining the error rate inside an
rate, a variant of the pl’eViOUS method consists in Ch00$‘ieg ﬁnterva' centered around the error rate of C|ass'lﬁ'@r

majority decision only if it is different from rejection. Th

method will be calledVlajCy++. C. Results
Example 8:1f Cy(z) = Q, Ca(z) = Pw; and Cs(z) = €, All individual and combined classifiers are represented
then MajCy(z) = Q and MajCy + + = @uw. Figure 5, in the two performance spacé®)R,1)S) and

If Ci(z) = Muwy, Co(x) = Puwy and Cs(z) = Q, then (PR, 2)S). The representation in the same figure allows to
MajCy(z) = MajCy + +(z) = Puwy. compare the classifier perormances at different levels.



(e.g., estimated posterior probabilities, degrees of nezafiip,

. etc.). Combining such scores with the confusion matrix to
- 1 define more informative belief functions is an interesting
problem which is left for further research.
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